Home
Class 12
MATHS
lim(x rarr infty) (x^(3) int(-1//x)^(1//...

`lim_(x rarr infty) (x^(3) int_(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) dt)` is equal to `

A

`(1)/(3)`

B

`(2)/(3)`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \left( x^3 \int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{\ln(1+t^2)}{1+e^t} \, dt \right), \] we will follow these steps: ### Step 1: Analyze the integral First, we need to analyze the behavior of the integral \[ \int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{\ln(1+t^2)}{1+e^t} \, dt \] as \( x \to \infty \). As \( x \) approaches infinity, the limits of integration approach 0. ### Step 2: Approximate the integrand near \( t = 0 \) Next, we can approximate the integrand for small values of \( t \): 1. For small \( t \), \( \ln(1+t^2) \approx t^2 \) (using the Taylor expansion). 2. Also, \( e^t \approx 1 + t \) for small \( t \). Thus, the integrand becomes: \[ \frac{\ln(1+t^2)}{1+e^t} \approx \frac{t^2}{1 + (1 + t)} = \frac{t^2}{2 + t} \approx \frac{t^2}{2} \quad \text{as } t \to 0. \] ### Step 3: Evaluate the integral Now we evaluate the integral: \[ \int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{t^2}{2} \, dt = \frac{1}{2} \int_{-\frac{1}{x}}^{\frac{1}{x}} t^2 \, dt. \] Calculating the integral: \[ \int t^2 \, dt = \frac{t^3}{3} \quad \text{and evaluating from } -\frac{1}{x} \text{ to } \frac{1}{x}: \] \[ \int_{-\frac{1}{x}}^{\frac{1}{x}} t^2 \, dt = \left[ \frac{t^3}{3} \right]_{-\frac{1}{x}}^{\frac{1}{x}} = \frac{1}{3} \left( \left(\frac{1}{x}\right)^3 - \left(-\frac{1}{x}\right)^3 \right) = \frac{1}{3} \left( \frac{1}{x^3} + \frac{1}{x^3} \right) = \frac{2}{3x^3}. \] Thus, \[ \int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{t^2}{2} \, dt = \frac{1}{2} \cdot \frac{2}{3x^3} = \frac{1}{3x^3}. \] ### Step 4: Substitute back into the limit Now substituting this back into the limit: \[ \lim_{x \to \infty} \left( x^3 \cdot \frac{1}{3x^3} \right) = \lim_{x \to \infty} \frac{1}{3} = \frac{1}{3}. \] ### Conclusion Thus, the limit evaluates to \[ \lim_{x \to \infty} \left( x^3 \int_{-\frac{1}{x}}^{\frac{1}{x}} \frac{\ln(1+t^2)}{1+e^t} \, dt \right) = \frac{1}{3}. \] ### Final Answer The final answer is: \[ \frac{1}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

If phi (x) =int_(1//x)^(sqrt(x)) sin(t^(2))dt then phi ' (1)is equal to

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

If x=int_(0)^(oo)(dt)/((1+t^(2))(1+t^(2017))) , then (3x)/(pi) is equal to

If f(x)=int_(1)^(x)(logt)/(1+t+t^(2)) , AAx ge 1 , then f(2) is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |