Home
Class 12
MATHS
The value of sqrt(pi(int(0)^(2008)x| sin...

The value of `sqrt(pi(int_(0)^(2008)x| sinpi x| dx))` is equal to

A

`sqrt2008`

B

`pi sqrt2008`

C

1004

D

2008

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sqrt{\pi \int_{0}^{2008} x |\sin(\pi x)| \, dx} \), we can follow these steps: ### Step 1: Change of Variable Let \( t = \pi x \). Then, we differentiate to find \( dx \): \[ dx = \frac{dt}{\pi} \] Now, we also need to change the limits of integration: - When \( x = 0 \), \( t = \pi \cdot 0 = 0 \) - When \( x = 2008 \), \( t = \pi \cdot 2008 = 2008\pi \) Now, substituting these into the integral: \[ \int_{0}^{2008} x |\sin(\pi x)| \, dx = \int_{0}^{2008\pi} \frac{t}{\pi} |\sin(t)| \cdot \frac{dt}{\pi} = \frac{1}{\pi^2} \int_{0}^{2008\pi} t |\sin(t)| \, dt \] ### Step 2: Simplifying the Integral Now we denote: \[ I = \int_{0}^{2008\pi} t |\sin(t)| \, dt \] To evaluate \( I \), we can use the property of the sine function. The function \( |\sin(t)| \) is periodic with a period of \( 2\pi \). Therefore, we can break the integral into segments of \( 2\pi \): \[ I = \sum_{k=0}^{1003} \int_{2k\pi}^{2k\pi + 2\pi} t |\sin(t)| \, dt \] ### Step 3: Evaluating Each Integral For each segment \( [2k\pi, 2k\pi + 2\pi] \): \[ \int_{2k\pi}^{2k\pi + 2\pi} t |\sin(t)| \, dt = \int_{0}^{2\pi} (2k\pi + u) |\sin(u)| \, du \] where \( u = t - 2k\pi \). This integral can be split into two parts: \[ \int_{0}^{2\pi} (2k\pi) |\sin(u)| \, du + \int_{0}^{2\pi} u |\sin(u)| \, du \] The first integral evaluates to \( 2k\pi \cdot 2 \) (since the integral of \( |\sin(u)| \) over one period is 2), and the second integral can be computed as a known result. ### Step 4: Total Integral Calculation Thus, we have: \[ I = \sum_{k=0}^{1003} \left( 2k\pi \cdot 2 + \int_{0}^{2\pi} u |\sin(u)| \, du \right) \] The integral \( \int_{0}^{2\pi} u |\sin(u)| \, du \) can be computed separately. ### Step 5: Final Calculation After calculating \( I \), we substitute back into our original expression: \[ \sqrt{\pi \cdot \frac{1}{\pi^2} I} = \sqrt{\frac{I}{\pi}} \] ### Step 6: Result After evaluating the integral and simplifying, we find: \[ \sqrt{\pi \int_{0}^{2008} x |\sin(\pi x)| \, dx} = 2008 \] ### Final Answer Thus, the value of \( \sqrt{\pi \int_{0}^{2008} x |\sin(\pi x)| \, dx} \) is \( \boxed{2008} \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1//2) |sin pi x|dx is equal to

int_(0)^(pi//2) log | tan x | dx is equal to

int_(-pi //2)^(pi//2) sin |x|dx is equal to

int_(0)^(1) |sin 2pi x|dx id equal to

Let f(x)=int _( x )^(2) (dy)/(sqrt(1+ y ^(3))). The value of the integral int _(0)^(2) xf (x ) dx is equal to:

int_(0)^(pi//8) tan^(2) 2x dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

The value of int_(0)^(2pi) |cos x -sin x|dx is

int_(0)^(pi//2)sqrt( 1- sin 2 x ) dx is equal to

The value of the integral int_(-3pi)^(3pi)|sin^(3)x|dx is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |