Home
Class 12
MATHS
lim(n rarr infty) sum(k=1)^(n) (n)/(n^(...

`lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 ` is equal to

A

`x tan ^(-1)(x)`

B

`tan^(-1)(x)`

C

`(tan^(-1)(x))/(x)`

D

`tan^(-1)(x)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2 x^2} \] ### Step 1: Rewrite the Sum We can rewrite the sum by factoring out \( n \) from the denominator: \[ \sum_{k=1}^{n} \frac{n}{n^2 + k^2 x^2} = \sum_{k=1}^{n} \frac{n}{n^2(1 + \frac{k^2 x^2}{n^2})} = \sum_{k=1}^{n} \frac{1}{n(1 + \frac{k^2 x^2}{n^2})} \] ### Step 2: Change of Variable Now, we can express this sum in terms of \( t = \frac{k}{n} \). Thus, \( k = nt \) and \( \Delta t = \frac{1}{n} \): \[ \sum_{k=1}^{n} \frac{1}{n(1 + \frac{k^2 x^2}{n^2})} = \sum_{k=1}^{n} \frac{1}{n(1 + t^2 x^2)} \cdot \Delta t \] ### Step 3: Convert to Integral As \( n \to \infty \), the sum approaches the integral: \[ \int_{0}^{1} \frac{1}{1 + t^2 x^2} \, dt \] ### Step 4: Evaluate the Integral The integral can be evaluated using the formula for the integral of \( \frac{1}{1 + a^2 t^2} \): \[ \int \frac{1}{1 + a^2 t^2} \, dt = \frac{1}{a} \tan^{-1}(at) + C \] In our case, \( a = x \): \[ \int_{0}^{1} \frac{1}{1 + t^2 x^2} \, dt = \frac{1}{x} \left[ \tan^{-1}(xt) \right]_{0}^{1} = \frac{1}{x} \left( \tan^{-1}(x) - \tan^{-1}(0) \right) = \frac{1}{x} \tan^{-1}(x) \] ### Step 5: Final Result Thus, we have: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{n}{n^2 + k^2 x^2} = \frac{1}{x} \tan^{-1}(x) \] ### Conclusion The final answer is: \[ \frac{1}{x} \tan^{-1}(x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

lim_(n rarr oo)2^(1/n)

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

lim_(n rarr0)(2-cot x)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |