Home
Class 12
MATHS
int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx...

`int_(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx` is equal to:

A

(a) `0`

B

(b) `1`

C

(c) `(1)/(2)`

D

(d) cannot be evaluated

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\infty} f\left(x + \frac{1}{x}\right) \frac{\ln x}{x} \, dx \), we will use a substitution method. Let's break it down step by step. ### Step 1: Define the integral Let \[ I = \int_{0}^{\infty} f\left(x + \frac{1}{x}\right) \frac{\ln x}{x} \, dx. \] ### Step 2: Make the substitution We will use the substitution \( x = \frac{1}{u} \). Then, we have: - \( dx = -\frac{1}{u^2} \, du \) - When \( x \to 0 \), \( u \to \infty \) - When \( x \to \infty \), \( u \to 0 \) ### Step 3: Change the limits and the integral Substituting into the integral, we get: \[ I = \int_{\infty}^{0} f\left(\frac{1}{u} + u\right) \frac{\ln\left(\frac{1}{u}\right)}{\frac{1}{u}} \left(-\frac{1}{u^2}\right) \, du. \] This simplifies to: \[ I = \int_{0}^{\infty} f\left(u + \frac{1}{u}\right) \frac{-\ln u}{u} \, du. \] ### Step 4: Simplify the logarithm Using the property of logarithms, \( \ln\left(\frac{1}{u}\right) = -\ln u \), we can rewrite the integral as: \[ I = \int_{0}^{\infty} f\left(u + \frac{1}{u}\right) \frac{\ln u}{u} \, du. \] ### Step 5: Recognize the symmetry Notice that the integral \( I \) can be rewritten as: \[ I = -\int_{0}^{\infty} f\left(u + \frac{1}{u}\right) \frac{\ln u}{u} \, du. \] Thus, we have: \[ I = -I. \] ### Step 6: Solve for \( I \) Adding \( I \) to both sides gives: \[ 2I = 0 \implies I = 0. \] ### Conclusion The value of the integral is: \[ I = 0. \] ### Final Answer Thus, the integral evaluates to \( \boxed{0} \). ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

The value of int _(0)^(infty)e-^(a^(2)x^(2)) dx is equal to

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

int (f'(x))/( f(x) log(f(x)))dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

Compute the following integrals. (i) int_(0)^(infty)f(x^(n)+x^(-n))lnx (dx)/(x)=0 (ii) int_(0)^(infty)f(x^(n)+x^(-n))lnx (dx)/(1+x^(2))=0

Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b, "then " int_(0)^(a) f(x) dx +int_(0)^(b) f^(-1) (x) dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |