Home
Class 12
MATHS
lim(lamda to 0)(int(0)^(1) (1+x)^(lambda...

`lim_(lamda to 0)(int_(0)^(1) (1+x)^(lambda ) dx)^(1//lambda)` Is equal to

A

(a) `2 In 2`

B

(b) `(4)/(e)`

C

(c) `In(4)/(e)`

D

(d) 4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{\lambda \to 0} \left( \int_{0}^{1} (1+x)^{\lambda} \, dx \right)^{\frac{1}{\lambda}}, \] we will follow these steps: ### Step 1: Evaluate the Integral We start by evaluating the integral \[ I(\lambda) = \int_{0}^{1} (1+x)^{\lambda} \, dx. \] Using the formula for integration, we have: \[ I(\lambda) = \left[ \frac{(1+x)^{\lambda + 1}}{\lambda + 1} \right]_{0}^{1}. \] Calculating the limits, we find: \[ I(\lambda) = \frac{(1+1)^{\lambda + 1} - (1+0)^{\lambda + 1}}{\lambda + 1} = \frac{2^{\lambda + 1} - 1}{\lambda + 1}. \] ### Step 2: Substitute the Integral into the Limit Now, we substitute \(I(\lambda)\) back into the limit: \[ \lim_{\lambda \to 0} \left( \frac{2^{\lambda + 1} - 1}{\lambda + 1} \right)^{\frac{1}{\lambda}}. \] ### Step 3: Analyze the Limit As \(\lambda \to 0\), both the numerator \(2^{\lambda + 1} - 1\) and the denominator \(\lambda + 1\) approach 1. Thus, we have an indeterminate form of the type \(1^{\infty}\). ### Step 4: Apply the Exponential Limit Rule To resolve the indeterminate form, we can use the property: \[ \lim_{\lambda \to 0} a^{g(\lambda)} = e^{\lim_{\lambda \to 0} (f(\lambda) - 1) g(\lambda)}, \] where \(f(\lambda) = 2^{\lambda + 1} - 1\) and \(g(\lambda) = \frac{1}{\lambda + 1}\). ### Step 5: Calculate the Limit Inside the Exponential Now we need to compute: \[ \lim_{\lambda \to 0} \left( 2^{\lambda + 1} - 1 \right) \cdot \frac{1}{\lambda + 1}. \] Using the fact that \(2^{\lambda + 1} = 2 \cdot 2^{\lambda}\), we can expand \(2^{\lambda}\) using the Taylor series: \[ 2^{\lambda} \approx 1 + \lambda \ln(2) \quad \text{as } \lambda \to 0. \] Thus, \[ 2^{\lambda + 1} - 1 \approx 2(1 + \lambda \ln(2)) - 1 = 2 + 2\lambda \ln(2) - 1 = 1 + 2\lambda \ln(2). \] Now substituting this back, we have: \[ \lim_{\lambda \to 0} \frac{1 + 2\lambda \ln(2) - 1}{\lambda + 1} = \lim_{\lambda \to 0} \frac{2\lambda \ln(2)}{\lambda + 1} = 2 \ln(2) \cdot \lim_{\lambda \to 0} \frac{\lambda}{\lambda + 1} = 2 \ln(2) \cdot 0 = 0. \] ### Step 6: Final Calculation Thus, we have: \[ \lim_{\lambda \to 0} \left( 2^{\lambda + 1} - 1 \right) \cdot \frac{1}{\lambda + 1} = 0. \] Therefore, \[ \lim_{\lambda \to 0} \left( \int_{0}^{1} (1+x)^{\lambda} \, dx \right)^{\frac{1}{\lambda}} = e^{0} = 1. \] ### Final Result The final result is: \[ \lim_{\lambda \to 0} \left( \int_{0}^{1} (1+x)^{\lambda} \, dx \right)^{\frac{1}{\lambda}} = 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

If int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx=mu e^(x)((1+x)/(1-x))^(lambda)+C , then 2(lambda+mu) is equal to ..... .

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |