Home
Class 12
MATHS
The value of the definite integral int(0...

The value of the definite integral `int_(0)^(pi//2)sin x sin 2x sin 3x dx ` is equal to

A

`(1)/(3)`

B

`-(2)/(3)`

C

`-(1)/(6)`

D

`(1)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the definite integral \( I = \int_0^{\frac{\pi}{2}} \sin x \sin 2x \sin 3x \, dx \), we can use the product-to-sum identities and properties of definite integrals. Here’s a step-by-step solution: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^{\frac{\pi}{2}} \sin x \sin 2x \sin 3x \, dx \] To simplify this, we can multiply and divide by 2: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} 2 \sin x \sin 2x \sin 3x \, dx \] ### Step 2: Use Product-to-Sum Identities Using the identity \( \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \), we can simplify \( \sin x \sin 2x \): \[ \sin x \sin 2x = \frac{1}{2} [\cos(x - 2x) - \cos(x + 2x)] = \frac{1}{2} [\cos(-x) - \cos(3x)] = \frac{1}{2} [\cos x - \cos 3x] \] Thus, we have: \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \left( \frac{1}{2} [\cos x - \cos 3x] \sin 3x \right) dx \] ### Step 3: Expand the Integral Now, we can distribute \( \sin 3x \): \[ I = \frac{1}{4} \int_0^{\frac{\pi}{2}} \left( \cos x \sin 3x - \cos 3x \sin 3x \right) dx \] ### Step 4: Simplify Each Integral Now we evaluate each part separately: 1. For \( \int_0^{\frac{\pi}{2}} \cos x \sin 3x \, dx \): Using the identity \( \sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \): \[ \int_0^{\frac{\pi}{2}} \cos x \sin 3x \, dx = \frac{1}{2} \left[ \int_0^{\frac{\pi}{2}} \sin(3x + x) \, dx + \int_0^{\frac{\pi}{2}} \sin(3x - x) \, dx \right] \] This simplifies to: \[ \frac{1}{2} \left[ \int_0^{\frac{\pi}{2}} \sin 4x \, dx + \int_0^{\frac{\pi}{2}} \sin 2x \, dx \right] \] 2. For \( \int_0^{\frac{\pi}{2}} \cos 3x \sin 3x \, dx \): This can be simplified using the same identity: \[ \int_0^{\frac{\pi}{2}} \cos 3x \sin 3x \, dx = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(6x) \, dx \] ### Step 5: Evaluate the Integrals Now we compute these integrals: - \( \int_0^{\frac{\pi}{2}} \sin 4x \, dx = \left[-\frac{1}{4} \cos 4x\right]_0^{\frac{\pi}{2}} = -\frac{1}{4} (0 - 1) = \frac{1}{4} \) - \( \int_0^{\frac{\pi}{2}} \sin 2x \, dx = \left[-\frac{1}{2} \cos 2x\right]_0^{\frac{\pi}{2}} = -\frac{1}{2} (0 - 1) = \frac{1}{2} \) - \( \int_0^{\frac{\pi}{2}} \sin 6x \, dx = \left[-\frac{1}{6} \cos 6x\right]_0^{\frac{\pi}{2}} = -\frac{1}{6} (0 - 1) = \frac{1}{6} \) ### Step 6: Combine the Results Putting it all together: \[ I = \frac{1}{4} \left( \frac{1}{2} \left( \frac{1}{4} + \frac{1}{2} \right) - \frac{1}{2} \cdot \frac{1}{6} \right) \] Calculating this gives: \[ I = \frac{1}{4} \left( \frac{1}{2} \cdot \frac{3}{4} - \frac{1}{12} \right) = \frac{1}{4} \left( \frac{3}{8} - \frac{1}{12} \right) \] Finding a common denominator (24): \[ \frac{3}{8} = \frac{9}{24}, \quad \frac{1}{12} = \frac{2}{24} \Rightarrow \frac{9}{24} - \frac{2}{24} = \frac{7}{24} \] Thus, \[ I = \frac{1}{4} \cdot \frac{7}{24} = \frac{7}{96} \] ### Final Answer The value of the definite integral is: \[ \boxed{\frac{1}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

The integral int_(0)^(pi//2) f(sin 2 x)sin x dx is equal to

int_(0)^(pi) sin 3x dx

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

int_(0)^(pi//2) x sin x cos x dx

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |