Home
Class 12
MATHS
If int-2^-1 (ax^2-5)dx=0 and 5 + int1^...

If `int_-2^-1 (ax^2-5)dx=0 and 5 + int_1^2 (bx + c) dx = 0`, then

A

`ax^(2)- bx+x=0` has aleast one root in` (1,2)`

B

`ax^(2)-bx+c =0` has aleast one root in `(-2,-1)`

C

`ax^(2)+bx+c=0` has atleast one root in`(-2,-1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate two definite integrals and set them equal to zero. Let's break it down step by step. ### Step 1: Evaluate the first integral We are given the integral: \[ \int_{-2}^{-1} (ax^2 - 5) \, dx = 0 \] First, we compute the integral: \[ \int (ax^2 - 5) \, dx = \frac{a}{3}x^3 - 5x + C \] Now, we evaluate it from -2 to -1: \[ \left[ \frac{a}{3}(-1)^3 - 5(-1) \right] - \left[ \frac{a}{3}(-2)^3 - 5(-2) \right] \] Calculating the values: \[ = \left[ \frac{a}{3}(-1) + 5 \right] - \left[ \frac{a}{3}(-8) + 10 \right] \] \[ = \left[ -\frac{a}{3} + 5 \right] - \left[ -\frac{8a}{3} + 10 \right] \] \[ = -\frac{a}{3} + 5 + \frac{8a}{3} - 10 \] \[ = \frac{7a}{3} - 5 \] Setting this equal to zero: \[ \frac{7a}{3} - 5 = 0 \] \[ \frac{7a}{3} = 5 \] \[ 7a = 15 \quad \Rightarrow \quad a = \frac{15}{7} \] ### Step 2: Evaluate the second integral Next, we have: \[ 5 + \int_{1}^{2} (bx + c) \, dx = 0 \] First, compute the integral: \[ \int (bx + c) \, dx = \frac{b}{2}x^2 + cx + C \] Now, evaluate it from 1 to 2: \[ \left[ \frac{b}{2}(2^2) + c(2) \right] - \left[ \frac{b}{2}(1^2) + c(1) \right] \] Calculating the values: \[ = \left[ \frac{b}{2}(4) + 2c \right] - \left[ \frac{b}{2}(1) + c \right] \] \[ = \left[ 2b + 2c \right] - \left[ \frac{b}{2} + c \right] \] \[ = 2b + 2c - \frac{b}{2} - c \] \[ = 2b - \frac{b}{2} + 2c - c \] \[ = \frac{4b}{2} - \frac{b}{2} + c \] \[ = \frac{3b}{2} + c \] Setting this equal to -5: \[ 5 + \left( \frac{3b}{2} + c \right) = 0 \] \[ \frac{3b}{2} + c = -5 \] ### Step 3: Summary of results We have two equations: 1. \( a = \frac{15}{7} \) 2. \( \frac{3b}{2} + c = -5 \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_0^1 x(1-x)^(5/2) dx

int (ax^2+bx+c)dx =

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , then

If int_0^1 xe^(x^2) dx=k int_0^1 e^(x^2) dx , then (A) kgt1 (B) 0ltklt1 (C) k=1 (D) none of these

int_(1)^(2)x^(5)dx

int_(0)^(1)x^2dx

If int_0^3 (3ax^2+2bx+c)dx=int_1^3 (3ax^2+2bx+c)dx where a,b,c are constants then a+b+c=

int(1)/((a+bx)^(5) )dx

1/4 int_(-1)^0 (x+2)dx-1/4 int_-1^0 x^2 dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(3))dx then

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |