Home
Class 12
MATHS
The value of int(3)^(6)(sqrt(x+sqrt(12x...

The value of `int_(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx` is equal to

A

`6sqrt3`

B

`4sqrt3`

C

`12sqrt3`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ \int_{3}^{6} \left( \sqrt{x + \sqrt{12x - 36}} + \sqrt{x - \sqrt{12x - 36}} \right) dx, \] we will follow these steps: ### Step 1: Simplify the expression under the square roots First, we notice that \( \sqrt{12x - 36} \) can be simplified. We can factor out the 12: \[ \sqrt{12x - 36} = \sqrt{12(x - 3)} = \sqrt{12} \sqrt{x - 3}. \] ### Step 2: Substitute Let \( t = \sqrt{12(x - 3)} \). Then, squaring both sides gives: \[ t^2 = 12(x - 3) \implies x - 3 = \frac{t^2}{12} \implies x = \frac{t^2}{12} + 3. \] ### Step 3: Find dx in terms of dt Differentiating both sides with respect to \( t \): \[ dx = \frac{1}{12} \cdot 2t \, dt = \frac{t}{6} \, dt. \] ### Step 4: Change the limits of integration When \( x = 3 \): \[ t = \sqrt{12(3 - 3)} = 0. \] When \( x = 6 \): \[ t = \sqrt{12(6 - 3)} = \sqrt{36} = 6. \] So the limits change from \( x = 3 \) to \( x = 6 \) into \( t = 0 \) to \( t = 6 \). ### Step 5: Substitute into the integral Now, substituting \( x \) and \( dx \) into the integral: \[ \int_{0}^{6} \left( \sqrt{\frac{t^2}{12} + 3 + t} + \sqrt{\frac{t^2}{12} + 3 - t} \right) \cdot \frac{t}{6} \, dt. \] ### Step 6: Simplify the integrand We simplify the terms inside the square roots: \[ \sqrt{\frac{t^2}{12} + 3 + t} = \sqrt{\frac{t^2 + 36 + 12t}{12}} = \frac{\sqrt{t^2 + 12t + 36}}{\sqrt{12}} = \frac{\sqrt{(t + 6)^2}}{\sqrt{12}} = \frac{t + 6}{\sqrt{12}}. \] Similarly, \[ \sqrt{\frac{t^2}{12} + 3 - t} = \frac{\sqrt{(t - 6)^2}}{\sqrt{12}} = \frac{6 - t}{\sqrt{12}}. \] ### Step 7: Combine the terms Now, substituting back into the integral: \[ \int_{0}^{6} \left( \frac{t + 6}{\sqrt{12}} + \frac{6 - t}{\sqrt{12}} \right) \cdot \frac{t}{6} \, dt. \] This simplifies to: \[ \int_{0}^{6} \frac{12}{\sqrt{12}} \cdot \frac{t}{6} \, dt = \int_{0}^{6} \sqrt{12} \cdot \frac{t}{6} \, dt = \frac{\sqrt{12}}{6} \int_{0}^{6} t \, dt. \] ### Step 8: Evaluate the integral The integral \( \int_{0}^{6} t \, dt \) is: \[ \left[ \frac{t^2}{2} \right]_{0}^{6} = \frac{6^2}{2} - 0 = 18. \] ### Step 9: Final calculation Now, substituting back: \[ \frac{\sqrt{12}}{6} \cdot 18 = 3\sqrt{12} = 3 \cdot 2\sqrt{3} = 6\sqrt{3}. \] Thus, the value of the definite integral is: \[ \boxed{6\sqrt{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

inte^(sqrt(x))dx is equal to

int sqrt((x)/( 1-x))dx is equal to

int(1+x)/(1+3sqrt(x))dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

The value if definite integral int_(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+sqrt(2x+sqrt(5(4x-5)))] dx is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(x+sqrt(x+1))/(x+2) dx is equal to:

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int_(a)^(b) ( sqrt(x))/( sqrt(x) + sqrt(a+b-x))dx is equal to

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |