Home
Class 12
MATHS
Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x...

Let `I_n=int_(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx`, where {*} denotet the fractional part of x. Find `I_1.`

A

`-(1)/(3)`

B

`-(2)/(3)`

C

`(1)/(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_{-n}^{n} \left( \{x+1\} \cdot \{x^2+2\} + \{x^2+2\} \cdot \{x^3+4\} \right) dx \), where \( \{x\} \) denotes the fractional part of \( x \), we will specifically find \( I_1 \). ### Step-by-Step Solution 1. **Set Up the Integral**: We need to evaluate: \[ I_1 = \int_{-1}^{1} \left( \{x+1\} \cdot \{x^2+2\} + \{x^2+2\} \cdot \{x^3+4\} \right) dx \] 2. **Evaluate the Fractional Parts**: For \( x \in [-1, 1] \): - \( \{x+1\} = x + 1 \) (since \( x + 1 \) ranges from 0 to 2) - \( \{x^2 + 2\} = x^2 \) (since \( x^2 + 2 \) ranges from 2 to 3) - \( \{x^3 + 4\} = x^3 \) (since \( x^3 + 4 \) ranges from 3 to 4) 3. **Substitute the Fractional Parts into the Integral**: Thus, we can rewrite the integral as: \[ I_1 = \int_{-1}^{1} \left( (x + 1) \cdot x^2 + x^2 \cdot x^3 \right) dx \] 4. **Simplify the Expression**: Expanding the integrand: \[ I_1 = \int_{-1}^{1} \left( x^3 + x^2 + x^5 \right) dx \] 5. **Break Down the Integral**: We can split the integral: \[ I_1 = \int_{-1}^{1} x^3 \, dx + \int_{-1}^{1} x^2 \, dx + \int_{-1}^{1} x^5 \, dx \] 6. **Evaluate Each Integral**: - \( \int_{-1}^{1} x^3 \, dx = 0 \) (odd function) - \( \int_{-1}^{1} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{-1}^{1} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3} \) - \( \int_{-1}^{1} x^5 \, dx = 0 \) (odd function) 7. **Combine the Results**: Thus, we have: \[ I_1 = 0 + \frac{2}{3} + 0 = \frac{2}{3} \] 8. **Final Result**: Therefore, the value of \( I_1 \) is: \[ I_1 = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let l_(1)=int_(1)^(10^(4))({sqrt(x)})/(sqrt(x))dx and l_(2)=int_(0)^(10)x{x^(2)}dx where {x} denotes fractional part of x then

If f(n)=(int_0^n[x]dx)/(int_0^n{x}dx) (where,[*] and {*} denotes greatest integer and fractional part of x and n in N). Then, the value of f(4) is...

Evaluate : (i) int_(-1)^(2){2x}dx (where function {*} denotes fractional part function) (ii) int_(0)^(10x)(|sinx|+|cosx|) dx (iii) (int_(0)^(n)[x]dx)/(int_(0)^(n)[x]dx) where [x] and {x} are integral and fractional parts of the x and n in N (iv) int_(0)^(210)(|sinx|-[|(sinx)/(2)|])dx (where [] denotes the greatest integer function and n in 1 )

Evaluate (int_(0)^(n)[x]dx)/(int_(0)^(n){x}dx) (where [x] and {x} are integral and fractional parts of x respectively and n epsilon N ).

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

Let I_(n) =int _(1) ^(e^(2))(ln x)^(n) dx (x ^(2)), then the value of 3I_(n)+nI_(n-1) equals to:

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

Let int _( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2+1)))")")dx =N. Find the valur of (N-6).

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Single Option Correct Type Questions)
  1. For f(x) =x^(4) +|x|, let I(1)= int (0)^(pi)f(cos x) dx and I(2)= int(...

    Text Solution

    |

  2. Let f be a positive function. Let I(1)=int(1-k)^(k)x f[x(1-x)]dx , I(...

    Text Solution

    |

  3. Suppose that the quadratic function f(x) = ax^(2) + bx +c is non-negat...

    Text Solution

    |

  4. Let I (a) =int(0)^(pi) ((x)/(a)+ a sin x)^(2) dx where a is positive r...

    Text Solution

    |

  5. The set of value of 'a' which satisfy the equation int0^2(t-log2a)dt...

    Text Solution

    |

  6. lim(x rarr infty) (x^(3) int(-1//x)^(1//x)("In" (1+t^(2)))/(1+e^(t)) d...

    Text Solution

    |

  7. The value of sqrt(pi(int(0)^(2008)x| sinpi x| dx)) is equal to

    Text Solution

    |

  8. lim(n rarr infty) sum(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equa...

    Text Solution

    |

  9. Let a gt 0 and f(x) is monotonic increase such that f(0)=0 and f(a)=b...

    Text Solution

    |

  10. Evaluate the definite integral: int(-1/(sqrt(3)))^(1/(sqrt(3)))((x^4)/...

    Text Solution

    |

  11. int(0)^(infty)f(x+(1)/(x)) (ln x )/(x)dx is equal to:

    Text Solution

    |

  12. lim(lamda to 0)(int(0)^(1) (1+x)^(lambda ) dx)^(1//lambda) Is equal t...

    Text Solution

    |

  13. If g(x) is the inverse of f(x) and f(x) has domain x in [1,5], where f...

    Text Solution

    |

  14. The value of the definite integral int(0)^(pi//2)sin x sin 2x sin 3x d...

    Text Solution

    |

  15. If f(x)= int(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable functi...

    Text Solution

    |

  16. The number of integral solutions of the equation 4int (0)^( infty)(In"...

    Text Solution

    |

  17. int(0)^(16n^(2)//pi) "cos" (pi)/(2)[(xpi)/(n)] dx is equal to

    Text Solution

    |

  18. If int-2^-1 (ax^2-5)dx=0 and 5 + int1^2 (bx + c) dx = 0, then

    Text Solution

    |

  19. The value of int(3)^(6)(sqrt(x+sqrt(12x-36))+sqrt(x-sqrt(12x- 36)))dx...

    Text Solution

    |

  20. Let In=int(-n)^n({x+1}*{x^2+2}+{x^2+2}{x^3+4})dx, where {*} denotet th...

    Text Solution

    |