Home
Class 12
MATHS
Suppose lim(xrarr0) (int(0)^(x)(t^(2) d...

`Suppose lim_(xrarr0) (int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l`,
`p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0`
If `l` exists and is non- zero, then

A

`b gt 1`

B

`0 lt b lt 1`

C

`b lt0`

D

`b=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{\int_{0}^{x} t^{2} \, dt}{(a + x^{r})^{1/p}} \Big/ (bx - \sin x) = l \] where \( p \in \mathbb{N}, p \geq 2, a > 0, r > 0, \) and \( b \neq 0 \). We need to find the conditions under which \( l \) exists and is non-zero. ### Step 1: Evaluate the integral First, we evaluate the integral in the numerator: \[ \int_{0}^{x} t^{2} \, dt = \left[ \frac{t^{3}}{3} \right]_{0}^{x} = \frac{x^{3}}{3} \] ### Step 2: Substitute the integral into the limit Now we substitute this result back into the limit: \[ \lim_{x \to 0} \frac{\frac{x^{3}}{3}}{(a + x^{r})^{1/p}} \Big/ (bx - \sin x) \] This simplifies to: \[ \lim_{x \to 0} \frac{x^{3}}{3(bx - \sin x)(a + x^{r})^{1/p}} \] ### Step 3: Analyze the denominator Next, we analyze the denominator \( bx - \sin x \). Using the Taylor series expansion for \( \sin x \) around \( x = 0 \): \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Thus, \[ bx - \sin x \approx bx - \left(x - \frac{x^3}{6}\right) = (b-1)x + \frac{x^3}{6} \] ### Step 4: Substitute the approximation into the limit Now we can rewrite our limit: \[ \lim_{x \to 0} \frac{x^{3}}{3((b-1)x + \frac{x^{3}}{6})(a + x^{r})^{1/p}} \] ### Step 5: Determine the behavior as \( x \to 0 \) As \( x \to 0 \), the term \( (b-1)x \) dominates \( \frac{x^{3}}{6} \) if \( b \neq 1 \). Thus, we can approximate: \[ bx - \sin x \approx (b-1)x \] ### Step 6: Substitute this back into the limit Substituting this back, we get: \[ \lim_{x \to 0} \frac{x^{3}}{3((b-1)x)(a + x^{r})^{1/p}} = \lim_{x \to 0} \frac{x^{2}}{3(b-1)(a + x^{r})^{1/p}} \] ### Step 7: Evaluate the limit As \( x \to 0 \), \( a + x^{r} \to a \). Therefore, we have: \[ \lim_{x \to 0} \frac{x^{2}}{3(b-1)(a)^{1/p}} = 0 \] ### Step 8: Condition for \( l \) to be non-zero For \( l \) to exist and be non-zero, we need \( b - 1 = 0 \), which implies \( b = 1 \). ### Conclusion Thus, if \( l \) exists and is non-zero, then: \[ b = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Suppose lim_(xrarr0)(int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l , p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0 If p=3 and l=1, then the value of 'a' is equal to

Suppose lim_(x to 0)(int_(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx)=l , p in N, p ge 2,a gt gt 0,rgt 0 and b ne 0 If p=2 and a=9 and l exists , then the value of l is equal to

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(x-sinx)=1(agt0) . Then the value of a is

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to