Home
Class 12
MATHS
Suppose I1=int0^(pi/2)cos(pisin^2x)dx an...

Suppose `I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx`, then

A

(a) `I_(1)=0`

B

(b) `I_(2)+I_(3)=0`

C

(c) `I_(1)+I_(2)+I_(3)=0`

D

(d) `I_(2)=I_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \), \( I_2 \), and \( I_3 \) and analyze their relationships. ### Step 1: Evaluate \( I_1 \) We start with: \[ I_1 = \int_0^{\frac{\pi}{2}} \cos(\pi \sin^2 x) \, dx \] Using King's rule, which states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] we can rewrite \( I_1 \): \[ I_1 = \int_0^{\frac{\pi}{2}} \cos(\pi \cos^2 x) \, dx \] Now we add the two expressions for \( I_1 \): \[ 2I_1 = \int_0^{\frac{\pi}{2}} \left( \cos(\pi \sin^2 x) + \cos(\pi \cos^2 x) \right) \, dx \] ### Step 2: Use the Cosine Addition Formula Using the identity \( \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \): \[ 2I_1 = \int_0^{\frac{\pi}{2}} 2 \cos\left(\frac{\pi}{2}\right) \cos(2x) \, dx \] Since \( \cos\left(\frac{\pi}{2}\right) = 0 \), we have: \[ 2I_1 = 0 \implies I_1 = 0 \] ### Step 3: Evaluate \( I_2 \) Next, we evaluate: \[ I_2 = \int_0^{\frac{\pi}{2}} \cos(2\pi \sin^2 x) \, dx \] We can rewrite this using the identity \( \cos(2\pi \sin^2 x) = \cos(\pi(1 - \cos(2x))) \): \[ I_2 = \int_0^{\frac{\pi}{2}} \cos(\pi(1 - \cos(2x))) \, dx \] ### Step 4: Change of Variables Let \( t = 2x \), then \( dx = \frac{dt}{2} \) and the limits change from \( 0 \) to \( \pi \): \[ I_2 = \frac{1}{2} \int_0^{\pi} \cos(\pi \cos t) \, dt \] ### Step 5: Apply Jack's Property Using Jack's property: \[ \int_0^{2A} f(x) \, dx = 2 \int_0^{A} f(x) \, dx \text{ if } f(2A - x) = f(x) \] we can conclude: \[ I_2 = -\frac{1}{2} \int_0^{\frac{\pi}{2}} \cos(\pi \sin t) \, dt = -\frac{1}{2} I_3 \] ### Step 6: Relationship Between \( I_2 \) and \( I_3 \) From the previous step, we have: \[ I_2 + I_3 = 0 \implies I_2 = -I_3 \] ### Conclusion We have found: - \( I_1 = 0 \) - \( I_2 + I_3 = 0 \) Thus, the correct options are: - \( I_1 = 0 \) - \( I_2 + I_3 = 0 \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

int_(0)^(pi/2) cos^(2) x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

I=int_0^(2pi) e^(sin^2x+sinx+1)dx then

int_(0)^(pi/2) cos 2x dx

If I_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)dx \ ,a n d \ I_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.

int_(0)^(pi//2) x^(2) cos x dx

I=int_(0)^( pi/2)x^(2)cos^(2)x*dx