Home
Class 12
MATHS
Let f(x) is a real valued function defin...

Let `f(x)` is a real valued function defined by `f(x)=x^(2)+x^(2) int_(-1)^(1) tf(t) dt+x^(3) int_(-1)^(1)f(t) dt`
then which of the following hold (s) good?

A

` int_(-1)^(1) tf(t) dt=(10)/(11)`

B

`f(1)+f(-1)=(30)/(11)`

C

`int_(-1)^(1)t f (t) dt gt int _(-1)^(1) f(t) dt`

D

`f(1)-f(-1)=(20)/(11)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined as: \[ f(x) = x^2 + x^2 \int_{-1}^{1} t f(t) \, dt + x^3 \int_{-1}^{1} f(t) \, dt \] Let's denote: \[ a = \int_{-1}^{1} t f(t) \, dt \] \[ b = \int_{-1}^{1} f(t) \, dt \] Now, substituting these into the function \( f(x) \): \[ f(x) = x^2 + ax^2 + bx^3 \] \[ f(x) = (1 + a)x^2 + bx^3 \] Next, we will find \( f(t) \) by substituting \( t \) for \( x \): \[ f(t) = (1 + a)t^2 + bt^3 \] Now, we need to compute \( a \) and \( b \): ### Step 1: Calculate \( a \) Substituting \( f(t) \) into the expression for \( a \): \[ a = \int_{-1}^{1} t f(t) \, dt = \int_{-1}^{1} t \left( (1 + a)t^2 + bt^3 \right) dt \] This expands to: \[ a = \int_{-1}^{1} \left( (1 + a)t^3 + bt^4 \right) dt \] Now, we compute the integrals: 1. \(\int_{-1}^{1} t^3 \, dt = 0\) (since \( t^3 \) is an odd function) 2. \(\int_{-1}^{1} t^4 \, dt = \frac{2}{5}\) Thus: \[ a = 0 + b \cdot \frac{2}{5} \] \[ a = \frac{2b}{5} \quad \text{(Equation 1)} \] ### Step 2: Calculate \( b \) Now we compute \( b \): \[ b = \int_{-1}^{1} f(t) \, dt = \int_{-1}^{1} \left( (1 + a)t^2 + bt^3 \right) dt \] This expands to: \[ b = (1 + a) \int_{-1}^{1} t^2 \, dt + b \int_{-1}^{1} t^3 \, dt \] Again, we compute the integrals: 1. \(\int_{-1}^{1} t^2 \, dt = \frac{2}{3}\) 2. \(\int_{-1}^{1} t^3 \, dt = 0\) Thus: \[ b = (1 + a) \cdot \frac{2}{3} + 0 \] \[ b = \frac{2}{3}(1 + a) \quad \text{(Equation 2)} \] ### Step 3: Solve the equations Now we have two equations: 1. \( a = \frac{2b}{5} \) 2. \( b = \frac{2}{3}(1 + a) \) Substituting Equation 1 into Equation 2: \[ b = \frac{2}{3}\left(1 + \frac{2b}{5}\right) \] Multiply both sides by 15 to eliminate the denominators: \[ 15b = 10(1 + \frac{2b}{5}) \] \[ 15b = 10 + 6b \] \[ 15b - 6b = 10 \] \[ 9b = 10 \quad \Rightarrow \quad b = \frac{10}{9} \] Now substituting \( b \) back into Equation 1 to find \( a \): \[ a = \frac{2b}{5} = \frac{2 \cdot \frac{10}{9}}{5} = \frac{20}{45} = \frac{4}{9} \] ### Step 4: Check the options Now we have: - \( a = \frac{4}{9} \) - \( b = \frac{10}{9} \) We need to check the options based on these values. 1. **Option A**: \( a = b \) (False) 2. **Option B**: \( a < b \) (True, since \( \frac{4}{9} < \frac{10}{9} \)) 3. **Option C**: \( a > b \) (False) 4. **Option D**: \( a + b = \frac{4}{9} + \frac{10}{9} = \frac{14}{9} \) (True) Thus, the correct options are B and D.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

A function f is defined by f(x) = int_0^pi cos t cos(x-t)dt,0 <= x <= 2 pi then which of the following.hold(s) good?

A differentiable function satisfies f(x) = int_(0)^(x) (f(t) cot t - cos(t - x))dt . Which of the following hold(s) good?

f(x)=int_(e^(x))^(e^(-x))ln((1)/(t))dt , then which of following are correct?

Let g(x)=int_0^(e^x) (f\'(t)dt)/(1+t^2) . Which of the following is true?

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then