Home
Class 12
MATHS
Let f(x)=int(-x)^(x)(t sin at + bt +c) d...

Let `f(x)=int_(-x)^(x)(t sin at + bt +c) dt, ` where a,b,c are non-zero real numbers , then `lim_(x rarr0) (f(x))/(x)` is

A

independent of a

B

independent of a and b , and has the value equals to c

C

independent a, b and c

D

dependent only on c

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{f(x)}{x} \] where \[ f(x) = \int_{-x}^{x} (t \sin(at) + bt + c) \, dt \] ### Step 1: Express the limit We start by substituting the expression for \( f(x) \): \[ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{1}{x} \int_{-x}^{x} (t \sin(at) + bt + c) \, dt \] ### Step 2: Evaluate the integral We can split the integral into three parts: \[ \int_{-x}^{x} (t \sin(at)) \, dt + \int_{-x}^{x} (bt) \, dt + \int_{-x}^{x} c \, dt \] 1. **First Integral: \( \int_{-x}^{x} t \sin(at) \, dt \)** This integral is an odd function (since \( t \sin(at) \) is odd), so: \[ \int_{-x}^{x} t \sin(at) \, dt = 0 \] 2. **Second Integral: \( \int_{-x}^{x} bt \, dt \)** This is also an odd function, so: \[ \int_{-x}^{x} bt \, dt = 0 \] 3. **Third Integral: \( \int_{-x}^{x} c \, dt \)** This integral is constant: \[ \int_{-x}^{x} c \, dt = c \cdot (x - (-x)) = c \cdot 2x = 2cx \] ### Step 3: Combine the results Now we can combine the results of the integrals: \[ f(x) = 0 + 0 + 2cx = 2cx \] ### Step 4: Substitute back into the limit Now substitute \( f(x) \) back into the limit: \[ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{2cx}{x} \] ### Step 5: Simplify the limit This simplifies to: \[ \lim_{x \to 0} 2c = 2c \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{f(x)}{x} = 2c \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)sqrt(x)=

lim_(x rarr0)(1+2x)^(5/x)

lim_(x rarr0)(2x^2-3x)/x

1) Evaluate lim_(x rarr0)(|x|)/(x)

lim_(x rarr0)x(cosec x)

3) lim_(x rarr0)[(1)/(x)-cot x]

lim_(x rarr0)(1/x)^(1-cos x)

lim_(n rarr0)(2-cot x)

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x rarr0)(x)/(sqrt(6-x)-4)