Home
Class 12
MATHS
Let L= lim(nrarr infty) int(a)^(infty)(n...

Let `L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2))`, where `a in R,` then L can be

A

`pi`

B

`pi//2`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ L = \lim_{n \to \infty} \int_{a}^{\infty} \frac{n \, dx}{1 + n^2 x^2} \] ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int_{a}^{\infty} \frac{n \, dx}{1 + n^2 x^2} \] ### Step 2: Substitution Next, we can use a substitution to simplify the integral. Let: \[ u = n x \quad \Rightarrow \quad dx = \frac{du}{n} \] When \( x = a \), \( u = n a \) and when \( x \to \infty \), \( u \to \infty \). Thus, the limits of integration change accordingly. Substituting into the integral gives: \[ I = \int_{n a}^{\infty} \frac{n \cdot \frac{du}{n}}{1 + u^2} = \int_{n a}^{\infty} \frac{du}{1 + u^2} \] ### Step 3: Evaluate the Integral The integral \( \int \frac{du}{1 + u^2} \) is a standard integral which evaluates to: \[ \tan^{-1}(u) \] Thus, we have: \[ I = \left[ \tan^{-1}(u) \right]_{n a}^{\infty} = \tan^{-1}(\infty) - \tan^{-1}(n a) \] ### Step 4: Calculate the Limits Since \( \tan^{-1}(\infty) = \frac{\pi}{2} \), we can write: \[ I = \frac{\pi}{2} - \tan^{-1}(n a) \] ### Step 5: Substitute Back into the Limit Now we substitute this back into our limit: \[ L = \lim_{n \to \infty} \left( \frac{\pi}{2} - \tan^{-1}(n a) \right) \] ### Step 6: Evaluate the Limit As \( n \to \infty \), \( \tan^{-1}(n a) \) approaches \( \frac{\pi}{2} \) (since \( a \) is a constant and \( n \) is going to infinity). Therefore: \[ L = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] ### Conclusion Thus, the value of \( L \) is: \[ L = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|12 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let L= underset(nrarr infty)(lim)int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Let L=lim_(nrarroo)int_a^oo (ndx)/(1+n^2x^2) where a in R then cos L can be (A) -1 (B) 0 (C) 1 (D) 1/2

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

Evaluate int_(0)^(infty)(lnxdx)/(x^(2)+2x+4)

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies

Let lim_(T rarr infty) (1)/(T) int_(0)^(T) ( sin x + sin ax)^(2) dx =L , then

Evaluate int_(0)^(infty) e^(-x)x^(3)dx .

The limit L=lim_(nrarroo)Sigma_(r=1)^(n)(n)/(n^(2)+r^(2)) satisfies the relation

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

Evaluate int _(0)^(infty) (tan^(-1)ax-tan^(-1)x)/(x)dx , where a is a parameter.