Home
Class 12
MATHS
The value of the integral int(-pi//2)^(p...

The value of the integral `int_(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi+x)) cos x dx `

A

0

B

`(pi^(2))/(2)-4`

C

`(pi^(2))/(2)+4`

D

`(pi^(2))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 + \log \left( \frac{\pi - x}{\pi + x} \right) \right) \cos x \, dx, \] we will use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} \left( f(x) + f(-x) \right) \, dx. \] ### Step 1: Rewrite the integral using the property We can express the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \left( f(x) + f(-x) \right) \, dx, \] where \[ f(x) = \left( x^2 + \log \left( \frac{\pi - x}{\pi + x} \right) \right) \cos x. \] ### Step 2: Calculate \( f(-x) \) Now we need to find \( f(-x) \): \[ f(-x) = \left( (-x)^2 + \log \left( \frac{\pi - (-x)}{\pi + (-x)} \right) \right) \cos(-x). \] Since \( (-x)^2 = x^2 \) and \( \cos(-x) = \cos x \), we have: \[ f(-x) = x^2 + \log \left( \frac{\pi + x}{\pi - x} \right) \cos x. \] ### Step 3: Combine \( f(x) \) and \( f(-x) \) Now we can add \( f(x) \) and \( f(-x) \): \[ f(x) + f(-x) = \left( x^2 + \log \left( \frac{\pi - x}{\pi + x} \right) \right) \cos x + \left( x^2 + \log \left( \frac{\pi + x}{\pi - x} \right) \right) \cos x. \] This simplifies to: \[ f(x) + f(-x) = 2x^2 \cos x + \left( \log \left( \frac{\pi - x}{\pi + x} \right) + \log \left( \frac{\pi + x}{\pi - x} \right) \right) \cos x. \] Using the property of logarithms: \[ \log a + \log b = \log(ab), \] we find that: \[ \log \left( \frac{\pi - x}{\pi + x} \cdot \frac{\pi + x}{\pi - x} \right) = \log(1) = 0. \] Thus, we have: \[ f(x) + f(-x) = 2x^2 \cos x. \] ### Step 4: Substitute back into the integral Now we can substitute back into the integral: \[ I = \int_{0}^{\frac{\pi}{2}} 2x^2 \cos x \, dx. \] ### Step 5: Evaluate the integral Now we need to evaluate: \[ I = 2 \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx. \] We will use integration by parts. Let: - \( u = x^2 \) and \( dv = \cos x \, dx \). - Then, \( du = 2x \, dx \) and \( v = \sin x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du, \] we get: \[ \int x^2 \cos x \, dx = x^2 \sin x \bigg|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} 2x \sin x \, dx. \] Evaluating \( x^2 \sin x \) at the limits: \[ \left( \frac{\pi^2}{4} \cdot 1 \right) - (0) = \frac{\pi^2}{4}. \] Now we need to evaluate \( \int_{0}^{\frac{\pi}{2}} 2x \sin x \, dx \) using integration by parts again: Let \( u = 2x \) and \( dv = \sin x \, dx \): - Then, \( du = 2 \, dx \) and \( v = -\cos x \). Thus: \[ \int 2x \sin x \, dx = -2x \cos x \bigg|_{0}^{\frac{\pi}{2}} + 2 \int_{0}^{\frac{\pi}{2}} \cos x \, dx. \] Evaluating: \[ -2 \left( \frac{\pi}{2} \cdot 0 - 0 \cdot 1 \right) + 2 \left( \sin x \bigg|_{0}^{\frac{\pi}{2}} \right) = 0 + 2(1 - 0) = 2. \] Putting it all together: \[ \int_{0}^{\frac{\pi}{2}} x^2 \cos x \, dx = \frac{\pi^2}{4} - 2. \] ### Step 6: Final value of \( I \) Thus, \[ I = 2 \left( \frac{\pi^2}{4} - 2 \right) = \frac{\pi^2}{2} - 4. \] ### Final Answer The value of the integral is \[ \boxed{\frac{\pi^2}{2} - 4}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(- (pi)/2)^( (pi)/2)(x^2 + ln( (pi + x)/(pi - x)))cosxdx is

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

int_(0)^(pi//2) x^(2) cos x dx

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

int_(pi//6)^(pi//2) cos x dx

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  2. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

    Text Solution

    |

  3. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  4. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  5. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  6. The value of int(0)^(1)(x^(4)(1-x)^(4))/(1+x^(4))dx is (are)

    Text Solution

    |

  7. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  8. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |

  9. Which of the following is true?

    Text Solution

    |

  10. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  11. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  12. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  13. Let S(n)=sum(k=1)^(n)n/(n^(2)+kn+k^(2)) and T(n)=sum(k=0)^(n-1)n/(n^(2...

    Text Solution

    |

  14. Then integral int(pi//4)^((3pi)/4) (dx)/(1+cosx) is equal to

    Text Solution

    |

  15. "Let " I(n)=int tan^(n)x dx,(n gt 1). I(4)+I(6)=a tan^(5)x+bx^(5)+C, "...

    Text Solution

    |

  16. lim(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n)is equal to

    Text Solution

    |

  17. The integral int(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is e...

    Text Solution

    |

  18. The integral int(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to...

    Text Solution

    |

  19. Statement I The value of the integral int(pi//6)^(pi//3) (dx)/(1+sqrt...

    Text Solution

    |

  20. The intercepts on x- axis made by tangents to the curve, y=int(0)^(x)|...

    Text Solution

    |