Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then g(x+...

If `g(x)=int_(0)^(x)cos^(4)t dt,` then `g(x+pi)` equals to (a)`(g(x))/(g(pi))` (b)`g(x)+g(pi)` (c)`g(x)-g(pi)` (d)`g(x).g(pi)`

A

`(g(x))/(g(pi))`

B

`g(x)+g(pi)`

C

`g(x)-g (pi)`

D

`g(x).g(pi)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a) g(x)+g(pi) (b) g(x)-g(pi) (c) g(x)g(pi) (d) (g(x))/(g(pi))

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) g(x)/(g(pi) (2) g(x)+g(pi) (3) g(x)-g(pi) (4) g(x)dotg(pi)

If g(x)=int_0^x(|sint|+|cost|)dt ,then g(x+(pin)/2) is equal to, where n in N , (a) g(x)+g(pi) (b) g(x)+g((npi)/(2)) (c) g(x)+g(pi/2) (d) none of these

If g(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , a) g(x)+g(pi) (b) g(x)+ng((pi)/(n2)) c) g(x)+g(pi/2) (d) none of these

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(pi/2)=-2pi (b) g^(prime)(-pi/2)=-2pi (c) g^(prime)(-pi/2)=2pi (d) g^(prime)(pi/2)=2pi

If (x-1) is a factor of polynomial f(x) but not of g(x) , then it must be a factor of (a) f(x)g(x) (b) -f\ (x)+\ g(x) (c) f(x)-g(x) (d) {f(x)+g(x)}g(x)

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to (A) f(a) = g(c ) (B) f(b) = g(b) (C) f(d) = g(b) (D) f(c ) = g(a)

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  2. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |

  3. Which of the following is true?

    Text Solution

    |

  4. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  5. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  6. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  7. Let S(n)=sum(k=1)^(n)n/(n^(2)+kn+k^(2)) and T(n)=sum(k=0)^(n-1)n/(n^(2...

    Text Solution

    |

  8. Then integral int(pi//4)^((3pi)/4) (dx)/(1+cosx) is equal to

    Text Solution

    |

  9. "Let " I(n)=int tan^(n)x dx,(n gt 1). I(4)+I(6)=a tan^(5)x+bx^(5)+C, "...

    Text Solution

    |

  10. lim(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n)is equal to

    Text Solution

    |

  11. The integral int(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is e...

    Text Solution

    |

  12. The integral int(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to...

    Text Solution

    |

  13. Statement I The value of the integral int(pi//6)^(pi//3) (dx)/(1+sqrt...

    Text Solution

    |

  14. The intercepts on x- axis made by tangents to the curve, y=int(0)^(x)|...

    Text Solution

    |

  15. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  16. The value of int(0)^(1)(8log(1+x))/(1+x^(2))dx is

    Text Solution

    |

  17. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  18. Let p(x) be a function defined on R such that lim(xrarr infty) f (3x...

    Text Solution

    |

  19. int(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is ...

    Text Solution

    |

  20. Let I=int(0)^(1)(sinx)/(sqrtx) dx and f= int(0)^(1)( cos x)/(sqrtx) dx...

    Text Solution

    |