Home
Class 12
MATHS
Let I=int(0)^(1)(sinx)/(sqrtx) dx and f=...

Let `I=int_(0)^(1)(sinx)/(sqrtx) dx and f= int_(0)^(1)( cos x)/(sqrtx) dx`
Then , which one of the following is true ?

A

`I gt (2)/(3) and f gt2`

B

`I lt (2)/(3) and f lt 2`

C

`I lt (2)/(3) and f gt 2`

D

`I gt (2)/(3) and f lt 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I \) and \( f \) defined as follows: \[ I = \int_{0}^{1} \frac{\sin x}{\sqrt{x}} \, dx \] \[ f = \int_{0}^{1} \frac{\cos x}{\sqrt{x}} \, dx \] We will analyze both integrals and compare their values. ### Step 1: Analyze \( I \) We know that for \( x \) in the interval \( [0, 1] \), \( \sin x \) is less than \( x \). Therefore, we can write: \[ \sin x < x \quad \text{for } x \in [0, 1] \] Dividing both sides by \( \sqrt{x} \) (which is positive for \( x \in (0, 1] \)), we have: \[ \frac{\sin x}{\sqrt{x}} < \frac{x}{\sqrt{x}} = \sqrt{x} \] Now, we can integrate both sides over the interval from 0 to 1: \[ \int_{0}^{1} \frac{\sin x}{\sqrt{x}} \, dx < \int_{0}^{1} \sqrt{x} \, dx \] Calculating the right-hand side: \[ \int_{0}^{1} \sqrt{x} \, dx = \int_{0}^{1} x^{1/2} \, dx = \left[ \frac{x^{3/2}}{3/2} \right]_{0}^{1} = \frac{2}{3} \left( 1^{3/2} - 0^{3/2} \right) = \frac{2}{3} \] Thus, we have: \[ I < \frac{2}{3} \] ### Step 2: Analyze \( f \) Next, we analyze \( f \): We know that \( \cos x \) is always less than or equal to 1 for \( x \in [0, 1] \): \[ \cos x \leq 1 \quad \text{for } x \in [0, 1] \] Dividing both sides by \( \sqrt{x} \): \[ \frac{\cos x}{\sqrt{x}} \leq \frac{1}{\sqrt{x}} = x^{-1/2} \] Integrating both sides from 0 to 1: \[ \int_{0}^{1} \frac{\cos x}{\sqrt{x}} \, dx \leq \int_{0}^{1} x^{-1/2} \, dx \] Calculating the right-hand side: \[ \int_{0}^{1} x^{-1/2} \, dx = \left[ \frac{x^{1/2}}{1/2} \right]_{0}^{1} = 2 \left( 1^{1/2} - 0^{1/2} \right) = 2 \] Thus, we have: \[ f < 2 \] ### Step 3: Conclusion From our analysis, we have: \[ I < \frac{2}{3} \quad \text{and} \quad f < 2 \] Since \( \frac{2}{3} < 2 \), we can conclude that: \[ I < f \] ### Final Result Thus, the correct relationship is: \[ I < f \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let I=int_0^1(sinx)/(sqrt(x))dx"and"J=int_0^1(cosx)/(sqrt(x))dx Then which one of the following is true? (1) I >2/3"and"j >2 (2) I 2 (4) I >2/3"and"j<2

If I=int_(0)^(1//2) (1)/(sqrt(1-x^(2n)))dx then which one of the following is not true ?

int_(0)^(pi)(x)/(1+sinx)dx .

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

int e^(sqrtx) dx

int (a^sqrtx)/(sqrtx) dx equals

If int_(0)^(1) f(x)=M,int_(0)^(1) g(x)dx=N , then which of the following is correct ?

int_(0)^( pi)(dx)/(1+cos x)

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

int_(0)^(pi) cos 2x . Log (sinx) dx

ARIHANT MATHS ENGLISH-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. For a epsilonR (the set of all real numbers) a!=-1, lim(n to oo) ((1^(...

    Text Solution

    |

  2. Let f:[0,1]toR (the set of all real numbers ) be a function. Suppose t...

    Text Solution

    |

  3. Which of the following is true?

    Text Solution

    |

  4. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  5. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  6. If int(n)=int(-pi)^(pi)(sin nx)/((1+pi^(x))sinx) dx, n=0,1,2,………. then

    Text Solution

    |

  7. Let S(n)=sum(k=1)^(n)n/(n^(2)+kn+k^(2)) and T(n)=sum(k=0)^(n-1)n/(n^(2...

    Text Solution

    |

  8. Then integral int(pi//4)^((3pi)/4) (dx)/(1+cosx) is equal to

    Text Solution

    |

  9. "Let " I(n)=int tan^(n)x dx,(n gt 1). I(4)+I(6)=a tan^(5)x+bx^(5)+C, "...

    Text Solution

    |

  10. lim(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n)is equal to

    Text Solution

    |

  11. The integral int(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is e...

    Text Solution

    |

  12. The integral int(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to...

    Text Solution

    |

  13. Statement I The value of the integral int(pi//6)^(pi//3) (dx)/(1+sqrt...

    Text Solution

    |

  14. The intercepts on x- axis made by tangents to the curve, y=int(0)^(x)|...

    Text Solution

    |

  15. If g(x)=int(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a)(g(x))/(g(pi)...

    Text Solution

    |

  16. The value of int(0)^(1)(8log(1+x))/(1+x^(2))dx is

    Text Solution

    |

  17. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  18. Let p(x) be a function defined on R such that lim(xrarr infty) f (3x...

    Text Solution

    |

  19. int(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is ...

    Text Solution

    |

  20. Let I=int(0)^(1)(sinx)/(sqrtx) dx and f= int(0)^(1)( cos x)/(sqrtx) dx...

    Text Solution

    |