Home
Class 12
MATHS
The solution of (dy)/(dx)=((x-1)^2+(y-2)...

The solution of `(dy)/(dx)=((x-1)^2+(y-2)^2tan^(- 1)((y-2)/(x-1)))/((x y-2x-y+2)tan^(- 1)((y-2)/(x-1)))` is equal to

A

`{(x-1)^(2)+(y-1)^(2)}tan^(-1)((y-2)/(x-1))-2(x-1)(y-2)=2(x-1)^(2)logc(x-1)`

B

`{(x-1)^(2)+(y-1)^(2)}-2(x-1)(y-2)tan^(-1)((y-1)/(x-1))=2(x-1)^(2)logc`

C

`{(x-1)^(2)+(y-1)^(2)tan^(-1)((y-2)/(x-1))-2(x-1)(y-2)=logC(x-1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} = \frac{(x-1)^2 + (y-2)^2 \tan^{-1}\left(\frac{y-2}{x-1}\right)}{(xy - 2x - y + 2) \tan^{-1}\left(\frac{y-2}{x-1}\right)}, \] we will follow these steps: ### Step 1: Simplify the equation We start by rewriting the equation in a more manageable form. We can express the right-hand side in terms of new variables: Let \( m = x - 1 \) and \( n = y - 2 \). Then, we have: \[ \frac{dy}{dx} = \frac{m^2 + n^2 \tan^{-1}\left(\frac{n}{m}\right)}{(m + 1)(n + 2) - 2(m + 1) - (n + 2) + 2) \tan^{-1}\left(\frac{n}{m}\right)}. \] ### Step 2: Change of variables Now, we can express \( \frac{dy}{dx} \) in terms of \( m \) and \( n \): \[ \frac{dn}{dm} = \frac{m^2 + n^2 \tan^{-1}\left(\frac{n}{m}\right)}{(m + 1)(n + 2) - 2(m + 1) - (n + 2) + 2) \tan^{-1}\left(\frac{n}{m}\right)}. \] ### Step 3: Substitute and simplify Next, we can substitute \( n = vm \) (where \( v = \frac{n}{m} \)) into the equation: \[ \frac{dn}{dm} = v + m \frac{dv}{dm}. \] This gives us: \[ v + m \frac{dv}{dm} = \frac{m^2 + v^2 m^2 \tan^{-1}(v)}{m v \tan^{-1}(v)}. \] ### Step 4: Rearranging the equation Rearranging the equation leads to: \[ m \frac{dv}{dm} = \frac{1 + v^2 \tan^{-1}(v)}{v \tan^{-1}(v)} - v. \] ### Step 5: Integrate both sides Now we can integrate both sides. We will use integration by parts for the left side: \[ \int v \tan^{-1}(v) dv = \frac{1}{2} v^2 \tan^{-1}(v) - \frac{1}{2} \int \frac{v^2}{1 + v^2} dv. \] ### Step 6: Solve for the final expression After performing the integration and substituting back for \( n \) and \( m \): \[ \frac{1}{2} (y - 2)^2 \tan^{-1}\left(\frac{y - 2}{x - 1}\right) - \frac{1}{2} \left( \frac{y - 2}{x - 1} \right) = \ln|x - 1| + C. \] ### Final Result Thus, the solution to the differential equation is: \[ \frac{1}{2} (y - 2)^2 \tan^{-1}\left(\frac{y - 2}{x - 1}\right) - \frac{1}{2} \left( \frac{y - 2}{x - 1} \right) = \ln|x - 1| + C. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

dy/dx=(x-y+1)/(2x-2y+3)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

The solution of (x d x+y dy)/(x dy-y dx)=sqrt((1-x^2-y^2)/(x^2+y^2)) is

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by

The solution of (dy)/(dx)=(x^2+y^2+1)/(2x y) satisfying y(1)=1 is given by

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if, tan^(-1)(x^2+y^2)=a

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)