Home
Class 12
MATHS
dy/dx=-(cosx(3cosy-7sinx-3))/(siny(3sinx...

`dy/dx=-(cosx(3cosy-7sinx-3))/(siny(3sinx-7cosy+7))`

A

`(cos y-sinx-1)^(2)(sinx+cosy-1)^(5)=C`

B

`(cosy-sinx-1)^(2)(sinx+cosy-1)^(3)=C`

C

`(cosy-sinx-1)^(2)(sinx+cosy-1)^(7)=C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ \frac{dy}{dx} = -\frac{\cos x (3 \cos y - 7 \sin x - 3)}{\sin y (3 \sin x - 7 \cos y + 7)}, \] we will follow these steps: ### Step 1: Substitute Variables Let \( t = \cos y \) and \( \mu = \sin x \). Then, we differentiate these substitutions: \[ \frac{dt}{dy} = -\sin y \frac{dy}{dx} \quad \text{and} \quad \frac{d\mu}{dx} = \cos x. \] ### Step 2: Rewrite the Differential Equation Substituting \( t \) and \( \mu \) into the differential equation gives: \[ \sin y \, dy = -\cos x \cdot \frac{3t - 7\mu - 3}{3\mu - 7t + 7} \, dx. \] ### Step 3: Cross-Multiply Cross-multiplying leads to: \[ \sin y \, dy = -\cos x \cdot \frac{3t - 7\mu - 3}{3\mu - 7t + 7} \, dx. \] ### Step 4: Separate Variables This can be rearranged to: \[ \frac{dt}{d\mu} = -\frac{3t - 7\mu - 3}{3\mu - 7t + 7}. \] ### Step 5: Homogenize the Equation To convert this into a homogeneous equation, we can set \( t = v\mu \) and differentiate: \[ dt = v \, d\mu + \mu \, dv. \] ### Step 6: Substitute Back Substituting back into the equation gives: \[ \frac{dt}{d\mu} = \frac{v \, d\mu + \mu \, dv}{d\mu} = v + \mu \frac{dv}{d\mu}. \] ### Step 7: Rearrange and Simplify This leads to: \[ v + \mu \frac{dv}{d\mu} = -\frac{3v\mu - 7\mu^2 - 3}{3\mu - 7v + 7}. \] ### Step 8: Solve the Resulting Equation We can now solve this equation by separating variables and integrating. ### Step 9: Integrate Integrate both sides to find \( v \) in terms of \( \mu \): \[ \int \frac{(3 - 7v)}{(v^2 - 1)} dv = \int \frac{7}{\mu} d\mu. \] ### Step 10: Combine Results After integrating, we can express the solution in terms of \( y \) and \( x \) by substituting back \( t = \cos y \) and \( \mu = \sin x \). ### Final Step: Write the General Solution The general solution will be in the form: \[ \cos y - 1 - \sin^2 x \cdot (\cos y - 1 + \sin^5 x) = C, \] where \( C \) is a constant. ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

intsinx/(3sinx+5cosx)dx

dy/dx = (1-sinx)/(1+cosy)

Find dy/dx if y=(cosx)/(1+sinx)

ysinx dy/dx=(sinx-y^2)cosx

Solve: 1. (x+1)(dy)/(dx)=2x y 2. cosx(1+cosy)dx-s in y(1+sinx)dy=0

Find dy/dx if cosy=siny+2x

Prove that: (cosx-cosy)^2+(sinx-siny)^2=4sin^2 (x-y)/2

Find dy/dx if x=cosy

Find dy/dx , tan^(-1){(cosx - sinx)/(cosx + sinx)} .

Find (dy)/(dx), y=(sinx)^(cosx)+(cosx)^(sinx)