Home
Class 12
MATHS
The curve with the property that the pro...

The curve with the property that the projection of the ordinate on the normal is constant and has a length equal to a is

A

`x-a In(sqrt(y^(2)-a^(2))+y)=C`

B

`x+a sqrt(a^(2)-y^(2))=C`

C

`(y-a)^(2)=Cx`

D

`ay=tan^(-1)(x+c)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|13 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|8 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

Find the curve for which the perpendicular from the foot of the ordinate to the tangent is of constant length.

A curve y=f(x) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of the point P from the x-axis. Then the differential equation of the curve

A curve C has the property that if the tangent drawn at any point P on C meets the co-ordinate axis at A and B , then P is the mid-point of A Bdot The curve passes through the point (1,1). Determine the equation of the curve.

The slope of the tangent at any arbitrary point of a curve is twice the product of the abscissa and square of the ordinate of the point. Then, the equation of the curve is (where c is an arbitrary constant)

A curve C has the property that its intial ordinate of any tangent drawn is less the abscissa of the point of tangency by unity. Statement I. Differential equation satisfying tha curve is linear. Statement II. Degree of differential equation is one.

A curve passing through the point (1,2) and satisfying the condition that slope of the normal at any point is equal to the ratio of ordinate and abscissa of that point , then the curve also passes through the point

A curve y=f(x) passes through point P(1,1) . The normal to the curve at P is a (y-1)+(x-1)=0 . If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

The Curve possessing the property that the intercept made by the tangent at any point of the curve on they-axis is equal to square of the abscissa of the point of tangency, is given by

The equation of the curve lying in the first quadrant, such that the portion of the x - axis cut - off between the origin and the tangent at any point P is equal to the ordinate of P, is (where, c is an arbitrary constant)

The slope of the tangent to the curve y=sqrt(4-x^2) at the point where the ordinate and the abscissa are equal is (a) -1 (b) 1 (c) 0 (d) none of these

ARIHANT MATHS ENGLISH-DIFFERENTIAL EQUATION -Exercise (Single Option Correct Type Questions)
  1. If the differential equation of the family of curve given by y=Ax+Be^(...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. The x-intercept of the tangent to a curve is equal to the ordinate of ...

    Text Solution

    |

  4. A function y = f(x) satisfies the condition f'(x) sin x + f(x) cos x=...

    Text Solution

    |

  5. A curve is such that the area of the region bounded by the co-ordinate...

    Text Solution

    |

  6. The value of the constant 'm' and 'c' for which y = mx + c is a soluti...

    Text Solution

    |

  7. Find the real value of m for which the substitution y=u^m will transfo...

    Text Solution

    |

  8. The solution of the differential equation, x^(2)dy/dxcos""(1)/(x)-ysi...

    Text Solution

    |

  9. A wet porous subtance in the open air loses its moisture at a rate pro...

    Text Solution

    |

  10. A curve C passes through origin and has the property that at each poin...

    Text Solution

    |

  11. A function y=f(x) satisfies (x+1)f^(')(x)-2(x^(2)+x)f(x) = e^(x^(2))/(...

    Text Solution

    |

  12. The curve with the property that the projection of the ordinate on the...

    Text Solution

    |

  13. The differential equation corresponding to the family of curves y=e^x ...

    Text Solution

    |

  14. The equation to the orthogonal trajectories of the system of parabolas...

    Text Solution

    |

  15. A function satisfying int0^1f(tx)dt=nf(x), where x>0 is

    Text Solution

    |

  16. The substituion y=z^(alpha) transforms the differential equation (x^(2...

    Text Solution

    |

  17. A curve passing through (2,3) and satisfying the differential equation...

    Text Solution

    |

  18. Which one of the following curves represents the solution of the initi...

    Text Solution

    |