Home
Class 12
MATHS
The function f(x) satisfying the equati...

The function `f(x) ` satisfying the equation `f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0`

A

`f(x)=C.e^((2-sqrt3)x`

B

`f(x)=C.e^((2+sqrt3)x`

C

`f(x)=C.e^((sqrt3-2)x`

D

`f(x)=C.e^(-(2+sqrt3)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \( f^2(x) + 4 f'(x) f(x) + (f'(x))^2 = 0 \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the given equation: \[ f^2(x) + 4 f'(x) f(x) + (f'(x))^2 = 0 \] This can be rearranged as: \[ (f'(x))^2 + 4 f(x) f'(x) + f^2(x) = 0 \] ### Step 2: Substitute \( f'(x) \) Let \( f'(x) = t \). Then, we can rewrite the equation as: \[ t^2 + 4 f(x) t + f^2(x) = 0 \] This is a quadratic equation in \( t \). ### Step 3: Use the Quadratic Formula For the quadratic equation \( at^2 + bt + c = 0 \), the solutions for \( t \) are given by: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 4f(x) \), and \( c = f^2(x) \). Plugging these values into the formula gives: \[ t = \frac{-4f(x) \pm \sqrt{(4f(x))^2 - 4 \cdot 1 \cdot f^2(x)}}{2 \cdot 1} \] This simplifies to: \[ t = \frac{-4f(x) \pm \sqrt{16f^2(x) - 4f^2(x)}}{2} \] \[ t = \frac{-4f(x) \pm \sqrt{12f^2(x)}}{2} \] \[ t = \frac{-4f(x) \pm 2\sqrt{3}f(x)}{2} \] \[ t = -2f(x) \pm \sqrt{3}f(x) \] ### Step 4: Express \( f'(x) \) Thus, we have: \[ f'(x) = -2f(x) + \sqrt{3}f(x) \quad \text{or} \quad f'(x) = -2f(x) - \sqrt{3}f(x) \] This simplifies to: \[ f'(x) = (-2 + \sqrt{3})f(x) \quad \text{or} \quad f'(x) = (-2 - \sqrt{3})f(x) \] ### Step 5: Separate Variables For the first case: \[ \frac{f'(x)}{f(x)} = -2 + \sqrt{3} \] Integrating both sides gives: \[ \ln |f(x)| = (-2 + \sqrt{3})x + C \] Exponentiating both sides results in: \[ f(x) = e^{C} e^{(-2 + \sqrt{3})x} \] Let \( C_1 = e^{C} \), then: \[ f(x) = C_1 e^{(-2 + \sqrt{3})x} \] For the second case: \[ \frac{f'(x)}{f(x)} = -2 - \sqrt{3} \] Integrating gives: \[ \ln |f(x)| = (-2 - \sqrt{3})x + C \] Exponentiating results in: \[ f(x) = C_2 e^{(-2 - \sqrt{3})x} \] ### Final Solution Thus, the general solution for the function \( f(x) \) is: \[ f(x) = C e^{(-2 + \sqrt{3})x} \quad \text{or} \quad f(x) = C e^{(-2 - \sqrt{3})x} \] where \( C \) is a constant.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|9 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|15 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|18 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

The function f(x) satisfies the equation f(x + 1) + f(x-1) = sqrt3 f(x) . then the period of f(x) is

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

A function f : R rarr R satisfies the equation f(x + y) = f(x) . f(y) for all, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2. Then,

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

A function f : R rarr R satisfies the equation f(x+y) = f(x). f(y) for all x y in R, f(x) ne 0 . Suppose that the function is differentiable at x = 0 and f'(0) = 2 , then prove that f' = 2f(x) .

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then Number of roots of the equation f(x)=e^(x) is