Home
Class 12
MATHS
The angle of elevation of the top of the...

The angle of elevation of the top of the tower observed from each of three points A,B , C on the ground, forming a triangle is the same angle `alpha.` If R is the circum-radius of the triangle ABC, then find the height of the tower

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise PROPERTIES AND SOLUTIONS OF TRIANGLES EXERSISE 1: SINGLE OPTION CORRECT TYPE QUESTIONS|1 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|61 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Sesssion 7|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The angle of elevation of the top of a tower as observed from a point on the ground is 'a' and on moving 'a' metre towards the tower, the angle of elevation is 'beta' Prove that the height of the tower is : (a tan alphatanbeta)/(tanbeta-tanalpha)

A person observed the angle of elevation of the top of a tower as 30^@ . He walked 50m towards the foot of the tower along level ground and found the angle of elevation of the top of the tower as 60^@ . Find the height of the tower.

A 20 m high vertical pole and a vertical tower are on the same level ground in such a way that the angle of elevation of the top of the tower, as seen from the foot of the pole, is 60^(@) and the angle of elevation of the top of the pole as seen from the foot of the tower is 30^(@) . Find : the height of the tower.

The angle of elevation of the top of a tower from a point A on the ground is 30^0dot On moving a distance of 20 metres towards the foot of the tower to a point B the angle of elevation increases to 60^0dot Find the height of the ttower and the distance of the tower from the point A.

The angle of elevation of the top of a tower from a point A on the ground is 30^0dot On moving a distance of 20 metres towards the foot of the tower to a point B the angle of elevation increases to 60^0dot Find the height of the ttower and the distance of the tower from the point A.

The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60^(@) . From a point Y, 40 m vertically above X, the angle of elevation of the top Q of tower is 45^(@) . Find the height of the tower PQ and the distance PX. (Use sqrt3=1.73 ).

The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60^@ .From a point y 40 m vertically above X, the angle of elevation the top Q of tower is 45^@ .Find the height of the tower PQ and the distance PX.(Use sqrt3=1.73 )

The angle of elevation of the top Q of a vertical tower PQ from a point X on the ground is 60^@ .From a point y 40 m vertically above X, the angle of elevation the top Q of tower is 45^@ .Find the height of the tower PQ and the distance PX.(Use sqrt3=1.73 )

The angle of elevation of the top of a tower from a point on the ground is 30^(@) . After walking 45 m towards the tower, the angle of elevation becomes 45^(@) . Find the height of the tower.

The angle of elevation of the top of a tower from a point 40 m away from its foot is 60^(@) . Find the height of the tower.