Home
Class 12
MATHS
Find the value of tan { cot ^(-1) ((-2)...

Find the value of `tan { cot ^(-1) ((-2)/3)}`

A

`- 2/3`

B

` 2/3`

C

` 3/2`

D

`- 3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan \left( \cot^{-1} \left( \frac{-2}{3} \right) \right) \), we can follow these steps: ### Step 1: Use the property of inverse cotangent We know that: \[ \cot^{-1}(-\theta) = \pi - \cot^{-1}(\theta) \] Applying this property, we can rewrite our expression: \[ \cot^{-1} \left( \frac{-2}{3} \right) = \pi - \cot^{-1} \left( \frac{2}{3} \right) \] ### Step 2: Substitute into the tangent function Now, substituting this back into our expression, we have: \[ \tan \left( \cot^{-1} \left( \frac{-2}{3} \right) \right) = \tan \left( \pi - \cot^{-1} \left( \frac{2}{3} \right) \right) \] ### Step 3: Use the tangent property Using the property of tangent: \[ \tan(\pi - \theta) = -\tan(\theta) \] We can rewrite our expression as: \[ \tan \left( \pi - \cot^{-1} \left( \frac{2}{3} \right) \right) = -\tan \left( \cot^{-1} \left( \frac{2}{3} \right) \right) \] ### Step 4: Find the tangent of the cotangent inverse Next, we know that: \[ \tan(\cot^{-1}(x)) = \frac{1}{x} \] Thus, we can substitute \( x = \frac{2}{3} \): \[ \tan \left( \cot^{-1} \left( \frac{2}{3} \right) \right) = \frac{1}{\frac{2}{3}} = \frac{3}{2} \] ### Step 5: Substitute back to find the final value Now, substituting this back into our expression: \[ \tan \left( \cot^{-1} \left( \frac{-2}{3} \right) \right) = -\frac{3}{2} \] ### Final Answer Thus, the value of \( \tan \left( \cot^{-1} \left( \frac{-2}{3} \right) \right) \) is: \[ \boxed{-\frac{3}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

find the value of tan^(-1){cot(-1/4)}

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the value of sin((1)/(2) cot^(-1) (-(3)/(4)))

Find the value of sin(1/2cot^(-1)(-3/4))

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

Find the value of cot(tan^(-1)a+cot^(-1)a)

: Find the value of cot (tan^-1 α + cot^-1 α).

Find the value of: cot(tan^(-1)a+cot^(-1)a)

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))