Home
Class 12
MATHS
Solve sin^(-1) x - cos^(-1) x = cos ^(-1...

Solve `sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x - \cos^{-1} x = \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \), we can follow these steps: ### Step 1: Identify the value of \( \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) \) We know that \( \cos \theta = \frac{\sqrt{3}}{2} \) corresponds to \( \theta = \frac{\pi}{6} \). Therefore, \[ \cos^{-1} \left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{6} \] ### Step 2: Rewrite the equation Now we can rewrite the original equation using the value we found: \[ \sin^{-1} x - \cos^{-1} x = \frac{\pi}{6} \] ### Step 3: Use the identity for \( \sin^{-1} x + \cos^{-1} x \) We know the identity: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Let’s denote this as Equation (2). ### Step 4: Add the two equations Now we have: 1. \( \sin^{-1} x - \cos^{-1} x = \frac{\pi}{6} \) (Equation 1) 2. \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \) (Equation 2) Adding these two equations: \[ (\sin^{-1} x - \cos^{-1} x) + (\sin^{-1} x + \cos^{-1} x) = \frac{\pi}{6} + \frac{\pi}{2} \] This simplifies to: \[ 2 \sin^{-1} x = \frac{\pi}{6} + \frac{\pi}{2} \] ### Step 5: Simplify the right-hand side To add \( \frac{\pi}{6} \) and \( \frac{\pi}{2} \), we need a common denominator: \[ \frac{\pi}{2} = \frac{3\pi}{6} \] Thus, \[ \frac{\pi}{6} + \frac{3\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] So we have: \[ 2 \sin^{-1} x = \frac{2\pi}{3} \] ### Step 6: Solve for \( \sin^{-1} x \) Dividing both sides by 2 gives: \[ \sin^{-1} x = \frac{\pi}{3} \] ### Step 7: Find \( x \) Taking the sine of both sides: \[ x = \sin \left( \frac{\pi}{3} \right) \] We know that: \[ \sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2} \] Thus, the solution is: \[ x = \frac{\sqrt{3}}{2} \] ### Final Answer \[ x = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

solve sin^(-1) x le cos^(-1) x

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve cos^(-1)x >cos^(-1)x^2

Solve cos^(-1)x >cos^(-1)x^2

Solve: sin^(-1)x=pi/6+cos^(-1)x

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve sin^(-1) x + sin^(-1) (1 - x) = cos^(-1) x

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)