Home
Class 12
MATHS
Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3...

Prove that `tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi`

Text Solution

Verified by Experts

The correct Answer is:
`pi`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that: tan^(-1) (1/2tan2A) + tan^(-1) (cotA) + tan^(-1) (cot^3A) =0

Prove that tan^(-1) x + tan^(-1).(1)/(x) = {(pi//2,"if" x gt 0),(-pi//2," if " x lt 0):}

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4