Home
Class 12
MATHS
Solve the following equations (i) tan^...

Solve the following equations
`(i) tan^(-1). ( x-1)/(x - 2) = tan ^(-1). ( x+1)/(x + 2) = pi/4 `
(ii) ` tan^(-1) 2 xx tan^(-1) 3x = pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equations, we will follow a step-by-step approach. ### (i) Solve the equation: \[ \tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4} \] **Step 1:** Use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Let \( a = \frac{x-1}{x-2} \) and \( b = \frac{x+1}{x+2} \). **Step 2:** Calculate \( a + b \): \[ a + b = \frac{x-1}{x-2} + \frac{x+1}{x+2} \] To combine these fractions, find a common denominator: \[ = \frac{(x-1)(x+2) + (x+1)(x-2)}{(x-2)(x+2)} \] Expanding the numerator: \[ = \frac{(x^2 + 2x - x - 2) + (x^2 - 2x + x - 2)}{(x-2)(x+2)} \] \[ = \frac{2x^2 - 4}{(x-2)(x+2)} = \frac{2(x^2 - 2)}{(x-2)(x+2)} \] **Step 3:** Calculate \( ab \): \[ ab = \left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right) = \frac{(x-1)(x+1)}{(x-2)(x+2)} = \frac{x^2 - 1}{(x-2)(x+2)} \] **Step 4:** Substitute \( a + b \) and \( ab \) into the formula: \[ \tan^{-1}\left(\frac{2(x^2 - 2)}{(x-2)(x+2) - (x^2 - 1)}\right) = \frac{\pi}{4} \] **Step 5:** Since \( \tan\left(\frac{\pi}{4}\right) = 1 \), we set the argument equal to 1: \[ \frac{2(x^2 - 2)}{(x-2)(x+2) - (x^2 - 1)} = 1 \] **Step 6:** Cross-multiply and simplify: \[ 2(x^2 - 2) = (x-2)(x+2) - (x^2 - 1) \] \[ 2x^2 - 4 = x^2 - 4 - x^2 + 1 \] \[ 2x^2 - 4 = -3 \] \[ 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] ### (ii) Solve the equation: \[ \tan^{-1}(2) + \tan^{-1}(3x) = \frac{\pi}{4} \] **Step 1:** Use the sum formula for inverse tangents: \[ \tan^{-1}(2) + \tan^{-1}(3x) = \tan^{-1}\left(\frac{2 + 3x}{1 - 2 \cdot 3x}\right) \] **Step 2:** Set the argument equal to 1: \[ \frac{2 + 3x}{1 - 6x} = 1 \] **Step 3:** Cross-multiply: \[ 2 + 3x = 1 - 6x \] **Step 4:** Combine like terms: \[ 3x + 6x = 1 - 2 \] \[ 9x = -1 \implies x = -\frac{1}{9} \] ### Final Solutions: 1. For the first equation: \( x = \pm \frac{\sqrt{2}}{2} \) 2. For the second equation: \( x = -\frac{1}{9} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve tan^(-1)2x+tan^(-1)3x=pi/4 .

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

Solve the following system of inequations: 4(tan^(-1)x)^2-8tan^(-1)x+3<0

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve the following equation for x : tan^(-1)(1/4)+2tan^(-1)(1/5)+tan^(-1)(1/6)+tan^(-1)(1/x)=pi/4

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4