Home
Class 12
MATHS
If cos^(-1) lamda + cos^(-1) mu + cos^(-...

If `cos^(-1) lamda + cos^(-1) mu + cos^(-1) gamma = 3pi`, then find the value of `lamda mu + mu gamma + gamma lamda`

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)lambdacos^(-1)mu+cos^(-1)gamma=3pi, then find the value of lambdamu+mulambdadot

If cos^(-1) alpha + cos^(-1) beta + cos^(-1) gamma = 3pi , then alpha (beta + gamma) + beta(gamma + alpha) + gamma(alpha + beta) equal to

IF lamda^(log_(5)3 =81 ,find the value of lamda .

If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is : (a) 1 (b) 1/2 (c) 3/8 (d) 9/4

If sin alpha, sin beta, sin gamma are in AP and cos alpha, cos beta, cos gamma are in GP , then the value of (cos^(2)alpha+cos^(2)gamma+4 cos alpha cos gamma-2 sin alpha sin gamma-2)/(1-2 sin^(2)beta) , where beta != (pi)/(4) , is equal to

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

Find values of lamda for which 1/log_3lamda+1/log_4lamdagt2 .

Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. If int _(0)^(2pi)g (x) dx = api ^(2) + beta pi+ gamma, where alpha, beta and gamma in R, then find the value of 2 (alpha + beta+ gamma).

If tan(picostheta) = cot(pisintheta) and cos(theta-(pi)/(4)) = pm(1)/(lambdasqrtmu) , then the value of lambda +mu is

If sec (alpha - 2 beta), sec alpha , sec (alpha + 2 beta) are in arithmetical progressin then cos ^(2) alpha = lamda cos ^(2) beta (beta ne n pi, n in I) the value of lamda is: