Home
Class 12
MATHS
If Sigma( i = 1)^( 2n) sin^(-1) x(i) = ...

If ` Sigma_( i = 1)^( 2n) sin^(-1) x_(i) = n pi` , then find the value of `Sigma_( i = 1)^( 2n) x_(i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \Sigma_{i=1}^{2n} x_i \) given that \( \Sigma_{i=1}^{2n} \sin^{-1}(x_i) = n\pi \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation: \[ \Sigma_{i=1}^{2n} \sin^{-1}(x_i) = n\pi \] The range of the function \( \sin^{-1}(x) \) is from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \). Therefore, for \( 2n \) terms, the maximum possible sum of \( \sin^{-1}(x_i) \) occurs when each \( \sin^{-1}(x_i) = \frac{\pi}{2} \). 2. **Finding the Maximum Value**: If each \( \sin^{-1}(x_i) \) were to equal \( \frac{\pi}{2} \), then: \[ \Sigma_{i=1}^{2n} \sin^{-1}(x_i) = 2n \cdot \frac{\pi}{2} = n\pi \] This indicates that each \( \sin^{-1}(x_i) \) must equal \( \frac{\pi}{2} \) for the sum to equal \( n\pi \). 3. **Determining Values of \( x_i \)**: Since \( \sin^{-1}(x_i) = \frac{\pi}{2} \), we have: \[ x_i = \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, all \( x_i \) values must be equal to 1. 4. **Calculating the Sum**: Now, we can compute the sum: \[ \Sigma_{i=1}^{2n} x_i = x_1 + x_2 + \ldots + x_{2n} = 1 + 1 + \ldots + 1 \quad (2n \text{ times}) \] This simplifies to: \[ \Sigma_{i=1}^{2n} x_i = 2n \] 5. **Final Answer**: Therefore, the value of \( \Sigma_{i=1}^{2n} x_i \) is: \[ \boxed{2n} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If n in NN , then find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) .

If barx is at mean of n values of x, then Sigma_(i=1)^(n) (x_(i)- barx)=0 and if a has value other than barx " then " Sigma_(i=1)^(n) (x_(i)- barx)^(2) " is less than " Sigma(x_(i)-a)^(2)

sum_(i=1)^(2n) sin^(-1)(x_i)=npi then the value of sum_(i=1)^n cos^(-1)x_i+sum_(i=1)^n tan^(-1)x_i= (A) (npi)/4 (B) (2/3)npi (C) (5/4)npi (D) 2npi

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

"Evaluate Sigma_(n=1)^(11) (2+3^(n))