Home
Class 12
MATHS
If sin^(-1) x + sin^(-1) y + sin^(-1) ...

If ` sin^(-1) x + sin^(-1) y + sin^(-1) z = (3pi)/2 ",then find the value of " Sigma ((x^(101) + y ^(101))(x^(202)+y^(202)))/((x^(303)+y^(303))(x^(404)+y^(404)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2} \] ### Step 1: Analyze the equation The equation \(\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}\) implies that each of the inverse sine functions must equal \(\frac{\pi}{2}\) because the maximum value of \(\sin^{-1} t\) for \(t \in [-1, 1]\) is \(\frac{\pi}{2}\). Thus, we can conclude: \[ \sin^{-1} x = \sin^{-1} y = \sin^{-1} z = \frac{\pi}{2} \] ### Step 2: Find the values of \(x\), \(y\), and \(z\) From the above conclusion, we can find the values of \(x\), \(y\), and \(z\): \[ x = \sin\left(\frac{\pi}{2}\right) = 1 \] \[ y = \sin\left(\frac{\pi}{2}\right) = 1 \] \[ z = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Step 3: Substitute the values into the expression Now we need to evaluate the expression: \[ \Sigma \frac{(x^{101} + y^{101})(x^{202} + y^{202})}{(x^{303} + y^{303})(x^{404} + y^{404})} \] Substituting \(x = 1\) and \(y = 1\): \[ \Sigma \frac{(1^{101} + 1^{101})(1^{202} + 1^{202})}{(1^{303} + 1^{303})(1^{404} + 1^{404})} \] ### Step 4: Simplify the expression Now we simplify each term: \[ 1^{101} + 1^{101} = 1 + 1 = 2 \] \[ 1^{202} + 1^{202} = 1 + 1 = 2 \] \[ 1^{303} + 1^{303} = 1 + 1 = 2 \] \[ 1^{404} + 1^{404} = 1 + 1 = 2 \] Substituting these values back into the expression: \[ \Sigma \frac{(2)(2)}{(2)(2)} = \Sigma \frac{4}{4} = \Sigma 1 \] ### Step 5: Count the number of terms in the summation Since we have three variables \(x\), \(y\), and \(z\), the summation will have three terms: \[ 1 + 1 + 1 = 3 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2pi , then find the value of x^2+y^2+z^2+t^2 .

If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2 , find the value of x^2+y^2+z^2 .

If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2 , find the value of x^2+y^2+z^2 .