Home
Class 12
MATHS
The sum of the infinte series sin^(-1)(1...

The sum of the infinte series `sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the infinite series \[ S = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sin^{-1}\left(\frac{\sqrt{2}-1}{\sqrt{6}}\right) + \sin^{-1}\left(\frac{\sqrt{3}-\sqrt{2}}{\sqrt{6}}\right) + \ldots + \sin^{-1}\left(\frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n(n+1)}}\right) + \ldots \] we can denote the general term of the series as: \[ T_n = \sin^{-1}\left(\frac{\sqrt{n} - \sqrt{n-1}}{\sqrt{n(n+1)}}\right) \] ### Step 1: Rewrite the term We can rewrite \(T_n\) as: \[ T_n = \sin^{-1}\left(\frac{\sqrt{n}}{\sqrt{n(n+1)}} - \frac{\sqrt{n-1}}{\sqrt{n(n+1)}}\right) \] This can be expressed as: \[ T_n = \sin^{-1}\left(\frac{1}{\sqrt{n(n+1)}}\right) - \sin^{-1}\left(\frac{\sqrt{n-1}}{\sqrt{n(n+1)}}\right) \] ### Step 2: Use the sine inverse subtraction formula Using the formula for the difference of inverse sine: \[ \sin^{-1}(x) - \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1-y^2} - y\sqrt{1-x^2}\right) \] We can express \(T_n\) as: \[ T_n = \sin^{-1}\left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}\right) \] ### Step 3: Sum the series Now we can sum the series: \[ S = \sum_{n=1}^{\infty} \left(\sin^{-1}\left(\frac{1}{\sqrt{n}}\right) - \sin^{-1}\left(\frac{1}{\sqrt{n+1}}\right)\right) \] This is a telescoping series, where most terms will cancel out: \[ S = \left(\sin^{-1}(1) - \lim_{n \to \infty} \sin^{-1}\left(\frac{1}{\sqrt{n+1}}\right)\right) \] ### Step 4: Evaluate the limit As \(n\) approaches infinity, \(\sin^{-1}\left(\frac{1}{\sqrt{n+1}}\right)\) approaches \(\sin^{-1}(0) = 0\). Thus, we have: \[ S = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] ### Final Answer The sum of the infinite series is: \[ \boxed{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(1/2)-2sin^(-1)(1/(sqrt(2)))

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

The sum of the series (1)/(sqrt(1)+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+ . . . . .+(1)/(sqrt(n^(2)-1)+sqrt(n^(2))) equals

Sum the series to infinity : sqrt(2)- (1)/(sqrt(2))+(1)/(2(sqrt(2)))-(1)/(4sqrt(2))+ ....

Find the principal value of each of the following: (i) sin^(-1)(-(sqrt(3))/2) (ii) sin^(-1)(cos (pi/3)) (iii) sin^(-1)((sqrt(3)-1)/(2sqrt(2)))

If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1))) then (dy)/(dx) =

The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2)) is tan^(-1)1 (b) n tan^(-1)(n+1) (d) tan^(-1)(n-1)

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx