Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, sho...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=pi`, show that `x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \( x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2) \) given that \( \sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \pi \), we can follow these steps: ### Step 1: Define the angles Let: \[ \sin^{-1}x = \alpha, \quad \sin^{-1}y = \beta, \quad \sin^{-1}z = \gamma \] Thus, we have: \[ \alpha + \beta + \gamma = \pi \] ### Step 2: Express sine and cosine From the definitions, we know: \[ x = \sin \alpha, \quad y = \sin \beta, \quad z = \sin \gamma \] Using the identity for cosine, we can express: \[ \cos(\alpha + \beta) = -\cos\gamma \] ### Step 3: Use the cosine addition formula Using the cosine addition formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] We can substitute: \[ \cos \alpha = \sqrt{1 - x^2}, \quad \cos \beta = \sqrt{1 - y^2}, \quad \sin \alpha = x, \quad \sin \beta = y \] Thus: \[ \cos(\alpha + \beta) = \sqrt{1 - x^2} \sqrt{1 - y^2} - xy \] Setting this equal to \(-\cos \gamma\): \[ \sqrt{1 - x^2} \sqrt{1 - y^2} - xy = -\sqrt{1 - z^2} \] ### Step 4: Rearranging the equation Rearranging gives: \[ \sqrt{1 - x^2} \sqrt{1 - y^2} + \sqrt{1 - z^2} = xy \] ### Step 5: Square both sides Squaring both sides: \[ (1 - x^2)(1 - y^2) + 1 - z^2 + 2\sqrt{(1 - x^2)(1 - y^2)(1 - z^2)} = x^2y^2 \] This simplifies to: \[ 1 - x^2 - y^2 + x^2y^2 + 1 - z^2 = x^2y^2 - 2\sqrt{(1 - x^2)(1 - y^2)(1 - z^2)} \] ### Step 6: Rearranging again Rearranging gives: \[ x^2 + y^2 - z^2 = 2xy\sqrt{1 - z^2} \] ### Step 7: Square again Squaring again: \[ (x^2 + y^2 - z^2)^2 = 4x^2y^2(1 - z^2) \] Expanding both sides: \[ x^4 + y^4 + z^4 + 2x^2y^2 - 2x^2z^2 - 2y^2z^2 = 4x^2y^2 - 4x^2y^2z^2 \] ### Step 8: Combine terms Rearranging gives: \[ x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2) \] Thus, we have shown that: \[ x^4 + y^4 + z^4 + 4x^2y^2z^2 = 2(x^2y^2 + y^2z^2 + z^2x^2) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+x y z=0 x^2+y^2+z^2+2x y z=0 x^2+y^2+z^2+x y z=1 x^2+y^2+z^2+2x y z=1