Home
Class 12
MATHS
Find the value of tan { 1/2 sin^(-1) ...

Find the value of
`tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1) ((1-y^(2))/(1+ y^(2)))}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \tan \left( \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) + \frac{1}{2} \cos^{-1} \left( \frac{1-y^2}{1+y^2} \right) \right). \] ### Step 1: Use the known formulas for inverse trigonometric functions We know the following identities: - \(\tan \left( \frac{1}{2} \sin^{-1}(z) \right) = \frac{z}{1 + \sqrt{1 - z^2}}\) - \(\tan \left( \frac{1}{2} \cos^{-1}(z) \right) = \frac{\sqrt{1 - z^2}}{1 + z}\) ### Step 2: Apply the formulas to the given expressions Let \( z_1 = \frac{2x}{1+x^2} \) and \( z_2 = \frac{1-y^2}{1+y^2} \). Using the first formula: \[ \tan \left( \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) = \frac{\frac{2x}{1+x^2}}{1 + \sqrt{1 - \left( \frac{2x}{1+x^2} \right)^2}}. \] ### Step 3: Simplify the expression for \( \tan \left( \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) \) Calculate \( \sqrt{1 - \left( \frac{2x}{1+x^2} \right)^2} \): \[ 1 - \left( \frac{2x}{1+x^2} \right)^2 = 1 - \frac{4x^2}{(1+x^2)^2} = \frac{(1+x^2)^2 - 4x^2}{(1+x^2)^2} = \frac{1 - 2x^2 + x^4}{(1+x^2)^2} = \frac{(1-x^2)^2}{(1+x^2)^2}. \] Thus, \[ \sqrt{1 - \left( \frac{2x}{1+x^2} \right)^2} = \frac{1-x^2}{1+x^2}. \] Substituting back, we have: \[ \tan \left( \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) \right) = \frac{\frac{2x}{1+x^2}}{1 + \frac{1-x^2}{1+x^2}} = \frac{\frac{2x}{1+x^2}}{\frac{2}{1+x^2}} = x. \] ### Step 4: Apply the second formula for \( \tan \left( \frac{1}{2} \cos^{-1} \left( \frac{1-y^2}{1+y^2} \right) \right) \) Now for \( z_2 = \frac{1-y^2}{1+y^2} \): \[ \tan \left( \frac{1}{2} \cos^{-1} \left( \frac{1-y^2}{1+y^2} \right) \right) = \frac{\sqrt{1 - \left( \frac{1-y^2}{1+y^2} \right)^2}}{1 + \frac{1-y^2}{1+y^2}}. \] Calculating \( \sqrt{1 - \left( \frac{1-y^2}{1+y^2} \right)^2} \): \[ 1 - \left( \frac{1-y^2}{1+y^2} \right)^2 = 1 - \frac{(1-y^2)^2}{(1+y^2)^2} = \frac{(1+y^2)^2 - (1-y^2)^2}{(1+y^2)^2} = \frac{4y^2}{(1+y^2)^2}. \] Thus, \[ \sqrt{1 - \left( \frac{1-y^2}{1+y^2} \right)^2} = \frac{2y}{1+y^2}. \] Substituting back, we have: \[ \tan \left( \frac{1}{2} \cos^{-1} \left( \frac{1-y^2}{1+y^2} \right) \right) = \frac{\frac{2y}{1+y^2}}{\frac{2}{1+y^2}} = y. \] ### Step 5: Combine the results Now we can combine the results: \[ \tan \left( \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) + \frac{1}{2} \cos^{-1} \left( \frac{1-y^2}{1+y^2} \right) \right) = \frac{x + y}{1 - xy}. \] Thus, the final answer is: \[ \tan \left( \frac{1}{2} \sin^{-1} \left( \frac{2x}{1+x^2} \right) + \frac{1}{2} \cos^{-1} \left( \frac{1-y^2}{1+y^2} \right) \right) = \frac{x + y}{1 - xy}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following: tan [1/2[sin^(-1) ((2x)/(1+x^2))+cos^(-1) ((1-y^2)/(1+y^2))]], |x| 0 and x y < 1 .

Find the value of: tan(1/2 [sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))]),|x| 0 and x y < 1

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

The value of tan{1/2 sin^-1 ((2x)/(1+x^2))+1/2 cos^-1 ((1-x^2)/(1+x^2))} is (A) (2x)/(1-x^2) (B) (2x)/(1-x^2) (C) not defined if x.>=1 (D) 0

Find the value of: tan1/2[sin^(-1)(2x)/(1+x^2)+cos^(-1)(1-y^2)/(1+y^2)],|x| 0 and x y" "<" "1

If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x then

If y=sin^(-1)((1-x^2)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , find (dy)/(dx) .

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1

Prove that: sin{tan^(-1)((1-x^2)/(2x))+cos^(-1)((1-x^2)/(1+x^2))}=1