Home
Class 12
MATHS
The value of 5 * cot ( Sigma(k =1)^(5) ...

The value of ` 5 * cot ( Sigma_(k =1)^(5) cot ^(-1) ( k^(2) + k + 1))` is equal to

A

`5/2`

B

7

C

`-7`

D

`7/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( 5 \cdot \cot \left( \sum_{k=1}^{5} \cot^{-1} (k^2 + k + 1) \right) \). ### Step-by-Step Solution: 1. **Rewrite the Summation**: We start with the summation: \[ \sum_{k=1}^{5} \cot^{-1} (k^2 + k + 1) \] We can use the identity \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). Thus, we can rewrite the summation as: \[ \sum_{k=1}^{5} \tan^{-1}\left(\frac{1}{k^2 + k + 1}\right) \] 2. **Use the Formula for the Difference of Inverses**: We know that: \[ \tan^{-1} a - \tan^{-1} b = \tan^{-1}\left(\frac{a-b}{1 + ab}\right) \] We can express \( \tan^{-1}\left(\frac{1}{k^2 + k + 1}\right) \) in terms of \( k \) and \( k+1 \): \[ \tan^{-1}(k+1) - \tan^{-1}(k) \] Therefore, our summation becomes: \[ \sum_{k=1}^{5} \left( \tan^{-1}(k+1) - \tan^{-1}(k) \right) \] 3. **Evaluate the Telescoping Series**: The series telescopes: \[ \tan^{-1}(2) - \tan^{-1}(1) + \tan^{-1}(3) - \tan^{-1}(2) + \tan^{-1}(4) - \tan^{-1}(3) + \tan^{-1}(5) - \tan^{-1}(4) + \tan^{-1}(6) - \tan^{-1}(5) \] Most terms cancel out, leaving us with: \[ \tan^{-1}(6) - \tan^{-1}(1) \] 4. **Combine the Inverses**: We can now express this as: \[ \tan^{-1}\left(\frac{6 - 1}{1 + 6 \cdot 1}\right) = \tan^{-1}\left(\frac{5}{7}\right) \] 5. **Find the Cotangent**: Now we need to find: \[ \cot\left(\tan^{-1}\left(\frac{5}{7}\right)\right) \] Using the identity \( \cot(\tan^{-1}(x)) = \frac{1}{x} \): \[ \cot\left(\tan^{-1}\left(\frac{5}{7}\right)\right) = \frac{7}{5} \] 6. **Final Calculation**: Now we can substitute back into our original expression: \[ 5 \cdot \cot\left(\sum_{k=1}^{5} \cot^{-1}(k^2 + k + 1)\right) = 5 \cdot \frac{7}{5} = 7 \] ### Conclusion: Thus, the value of \( 5 \cdot \cot\left(\sum_{k=1}^{5} \cot^{-1}(k^2 + k + 1)\right) \) is \( \boxed{7} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equal to

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

The sum sum_(k=1)^oocot^(-1)(2k^2) equals

Find the number of solution of the equation tan (Sigma_(r=1)^(5) cot^(-1) (2r^(2))) = (5x+6)/(6x+5) .

sum_(k=0)^(5)(-1)^(k)2k

The value of sec ( 2 cot^(-1) 2 + cos^(-1) . 3/5) is equal to

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

"Evaluate "Sigma_(k=1)^(11) (2+3^(k))