Home
Class 12
MATHS
If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(...

If `f(x)=x^(11)+x^9-x^7+x^3+1` and `f(sin^(-1)(sin8)=alpha,alpha` is constant, then `f(tan^(-1)(t a n8)` is equal to `alpha` (b) `alpha-2` (c) `alpha+2` (d) `2-alpha`

A

`alpha`

B

`alpha - 2`

C

` alpha + 2`

D

` 2 - alpha`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(11)+x^9-x^7+x^3+1 and f(sin^(-1)(sin8))=alpha,alpha is constant, then f(tan^(-1)(tan8)) is equal to (A) alpha (B) alpha-2 (C) alpha+2 (D) 2-alpha

If int_0^1tan^(-1)xdx=alpha,t h e nint_0^(pi/4)tan^(-1)((2cos^2theta)/(2-sin2theta))sec^2thetadtheta is equal to: alpha (b) alpha/2 (c) 3alpha (d) 2alpha

("lim")_(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n (when alpha in Q ) is equal to (a) e^(-alpha) (b) -alpha (c) e^(1-alpha) (d) e^(1+alpha)

If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal to 4 (b) 2sin^2alpha (c) -4sin^2alpha (d) 4sin^2alpha

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

Sum of roots of equations f(x) - g(x)=0 is (a)0 (b) 2alpha (c) -2alpha (d) 4alpha

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

If the sum of squares of roots of equation x^(2)-(sin alpha-2)x-(1+sin alpha)=0 is the least, then alpha is equal to

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha