Home
Class 12
MATHS
The number of values of x for which sin^...

The number of values of `x` for which `sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^(-1)(x^4-((x^8)/3+(x^(12))/9ddot)=pi/2,` where `0lt=|x|

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^(-1)(x^4-(x^8)/3+(x^(12))/9ddot)=pi/2, where 0<|x|

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

If sin^(- 1)(x-(x^2)/2+(x^3)/4-.....)+cos^(- 1)(x^2-(x^4)/2+(x^6)/4-.....)=pi/2 for 0 lt |x| lt sqrt2 then x=

Solve for x : sin^(- 1)(sin((2x^2+4)/(1+x^2)))lt pi-3

The number of solutions of 12 cos^(3) x-7 cos^(2) x+4 cos x=9 is

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+pi/2 is (a) 9 (b) -9 (c) -3 (d) -1

Number of real values of x in [0,4 pi] for which |sin x|+|sin x-3|+|sin x-4|=6 is:

The range of values of x which satisfy 2x^(2) + 9x + 4 lt 0 and x^(2) - 5x + 6 lt 0 is

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+x/2i s 9 (b) -9 (c) -3 (d) -1

The values of x which satisfy 18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0 and 18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0 simultaneously are