Home
Class 12
MATHS
Suppose 3 sin^(-1) ( log (2) x) + cos^(-...

Suppose `3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2` and `sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6`. then the value of `1/x^(-2) + 1/y^(-2)` equals .

A

6

B

7

C

5

D

`7/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define Variables Let: - \( p = \sin^{-1}(\log_2 x) \) - \( q = \cos^{-1}(\log_2 y) \) ### Step 2: Rewrite the Given Equations From the problem statement, we have the following equations: 1. \( 3p + q = \frac{\pi}{2} \) (Equation 1) 2. \( p + 2q = \frac{11\pi}{6} \) (Equation 2) ### Step 3: Solve for \( p \) and \( q \) We can solve these equations simultaneously. First, we can express \( q \) from Equation 1: \[ q = \frac{\pi}{2} - 3p \] Now, substitute this expression for \( q \) into Equation 2: \[ p + 2\left(\frac{\pi}{2} - 3p\right) = \frac{11\pi}{6} \] ### Step 4: Simplify the Equation Expanding the equation gives: \[ p + \pi - 6p = \frac{11\pi}{6} \] \[ -5p + \pi = \frac{11\pi}{6} \] ### Step 5: Isolate \( p \) Now, isolate \( p \): \[ -5p = \frac{11\pi}{6} - \pi \] Convert \( \pi \) to sixths: \[ -5p = \frac{11\pi}{6} - \frac{6\pi}{6} = \frac{5\pi}{6} \] \[ p = -\frac{\pi}{6} \] ### Step 6: Substitute Back to Find \( q \) Now substitute \( p \) back into the expression for \( q \): \[ q = \frac{\pi}{2} - 3\left(-\frac{\pi}{6}\right) \] \[ q = \frac{\pi}{2} + \frac{\pi}{2} = \pi \] ### Step 7: Find \( \log_2 x \) and \( \log_2 y \) Now that we have \( p \) and \( q \): 1. From \( p = \sin^{-1}(\log_2 x) = -\frac{\pi}{6} \): \[ \log_2 x = \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \] Therefore, \( x = 2^{-1/2} = \frac{1}{\sqrt{2}} \). 2. From \( q = \cos^{-1}(\log_2 y) = \pi \): \[ \log_2 y = \cos(\pi) = -1 \] Therefore, \( y = 2^{-1} = \frac{1}{2} \). ### Step 8: Calculate \( \frac{1}{x^{-2}} + \frac{1}{y^{-2}} \) Now we need to find: \[ \frac{1}{x^{-2}} + \frac{1}{y^{-2}} = x^2 + y^2 \] Calculating \( x^2 \) and \( y^2 \): \[ x^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] \[ y^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Thus: \[ x^2 + y^2 = \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \] ### Final Answer The value of \( \frac{1}{x^{-2}} + \frac{1}{y^{-2}} \) is: \[ \frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

Let y=ln (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y//2)) equals

If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1) , then the value of (log 3 - log 2)//(x-y) is

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

The solution of the inequality "log"_(2) sin^(-1) x gt "log"_(1//2) cos^(-1) x is

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

For relation 2 log y - log x - log ( y-1) =0

The number of ordered pairs (x, y) satisfying 4("log"_(2) x^(2))^(2) + 1 = 2 "log"_(2)y " and log"_(2)x^(2) ge "log"_(2) y , is