Home
Class 12
MATHS
If alpha " and " beta ( alpha gt beta) ...

If `alpha " and " beta ( alpha gt beta) ` are roots of the equation ` x^(2) - sqrt2 x + sqrt( 3 - 2 sqrt 2 ) = 0", then the value of " ( cos^(-1) alpha + tan^(-1) alpha + tan ^(-1) beta) ` is equal to

A

`(3pi)/8`

B

`(5pi)/8`

C

`(7pi)/8`

D

`pi/3 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will find the roots of the given quadratic equation and then evaluate the expression \( \cos^{-1} \alpha + \tan^{-1} \alpha + \tan^{-1} \beta \). ### Step 1: Identify the quadratic equation The given equation is: \[ x^2 - \sqrt{2}x + \sqrt{3 - 2\sqrt{2}} = 0 \] ### Step 2: Simplify the constant term We need to simplify \( \sqrt{3 - 2\sqrt{2}} \). We can rewrite it as: \[ 3 - 2\sqrt{2} = (\sqrt{2} - 1)^2 \] Thus, \[ \sqrt{3 - 2\sqrt{2}} = \sqrt{(\sqrt{2} - 1)^2} = \sqrt{2} - 1 \] ### Step 3: Substitute back into the equation Now, substituting back into the quadratic equation, we get: \[ x^2 - \sqrt{2}x + (\sqrt{2} - 1) = 0 \] ### Step 4: Apply the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -\sqrt{2} \), and \( c = \sqrt{2} - 1 \). Calculating \( b^2 - 4ac \): \[ b^2 = (\sqrt{2})^2 = 2 \] \[ 4ac = 4 \cdot 1 \cdot (\sqrt{2} - 1) = 4\sqrt{2} - 4 \] Thus, \[ b^2 - 4ac = 2 - (4\sqrt{2} - 4) = 6 - 4\sqrt{2} \] ### Step 5: Calculate the roots Now substituting into the quadratic formula: \[ x = \frac{\sqrt{2} \pm \sqrt{6 - 4\sqrt{2}}}{2} \] We can simplify \( \sqrt{6 - 4\sqrt{2}} \): \[ 6 - 4\sqrt{2} = 2(\sqrt{2} - 1)^2 \] So, \[ \sqrt{6 - 4\sqrt{2}} = \sqrt{2}(\sqrt{2} - 1) = 2 - \sqrt{2} \] Thus, the roots become: \[ x = \frac{\sqrt{2} \pm (2 - \sqrt{2})}{2} \] Calculating the two roots: 1. \( \alpha = \frac{\sqrt{2} + (2 - \sqrt{2})}{2} = \frac{2}{2} = 1 \) 2. \( \beta = \frac{\sqrt{2} - (2 - \sqrt{2})}{2} = \frac{2\sqrt{2} - 2}{2} = \sqrt{2} - 1 \) ### Step 6: Evaluate the expression Now we need to find: \[ \cos^{-1} \alpha + \tan^{-1} \alpha + \tan^{-1} \beta \] Substituting \( \alpha = 1 \) and \( \beta = \sqrt{2} - 1 \): 1. \( \cos^{-1}(1) = 0 \) 2. \( \tan^{-1}(1) = \frac{\pi}{4} \) 3. \( \tan^{-1}(\sqrt{2} - 1) = \frac{\pi}{8} \) (since \( \tan(\frac{\pi}{8}) = \sqrt{2} - 1 \)) Thus, we get: \[ 0 + \frac{\pi}{4} + \frac{\pi}{8} = \frac{2\pi}{8} + \frac{\pi}{8} = \frac{3\pi}{8} \] ### Final Answer The value of \( \cos^{-1} \alpha + \tan^{-1} \alpha + \tan^{-1} \beta \) is: \[ \frac{3\pi}{8} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

Let alpha, beta are the roots of the equation x^(2)+7x+k(k-3)=0 , where k in (0, 3) and k is a constant. Then the value of tan^(-1)alpha+tan^(-1)beta+"tan"^(-1)(1)/(alpha)+"tan"^(-1)(1)/(beta) is :

If alpha and beta are the roots of the equations x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+beta^(2)alpha^(-2)

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha, beta and gamma are the roots of the equation x^(3) + 3x^(2) - 24x + 1 = 0 then find the value of (3sqrt(alpha)+3sqrt(beta)+ 3sqrt(gamma)).