Home
Class 12
MATHS
If the mapping f(x) = mx + c, m gt 0 m...

If the mapping `f(x) = mx + c, m gt 0 ` maps `[-1,1]` onto `[0,2]`, then `tan ( tan^(-1). 1/7 + cot ^(-1) 8 + cot ^(-1) 18)` is equal to

A

`f(2/3)`

B

`f(1/3)`

C

`f((-1)/3)`

D

`f((-2)/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \tan \left( \tan^{-1} \frac{1}{7} + \cot^{-1} 8 + \cot^{-1} 18 \right) \). ### Step 1: Rewrite the cotangent inverse terms We can rewrite \( \cot^{-1} 8 \) and \( \cot^{-1} 18 \) in terms of tangent inverse: \[ \cot^{-1} 8 = \tan^{-1} \frac{1}{8} \] \[ \cot^{-1} 18 = \tan^{-1} \frac{1}{18} \] ### Step 2: Use the tangent addition formula Now we can use the formula for the tangent of the sum of two angles: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Let \( A = \tan^{-1} \frac{1}{7} \) and \( B = \tan^{-1} \frac{1}{8} \). ### Step 3: Apply the formula Using the formula: \[ \tan \left( \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{8} \right) = \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \cdot \frac{1}{8}} \] ### Step 4: Simplify the expression Calculate \( \frac{1}{7} + \frac{1}{8} \): \[ \frac{1}{7} + \frac{1}{8} = \frac{8 + 7}{56} = \frac{15}{56} \] Calculate \( 1 - \frac{1}{7} \cdot \frac{1}{8} \): \[ 1 - \frac{1}{56} = \frac{56 - 1}{56} = \frac{55}{56} \] ### Step 5: Substitute back into the tangent formula Now substituting back: \[ \tan \left( \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{8} \right) = \frac{\frac{15}{56}}{\frac{55}{56}} = \frac{15}{55} = \frac{3}{11} \] ### Step 6: Add the last term Now we need to add \( \tan^{-1} \frac{3}{11} \) and \( \tan^{-1} \frac{1}{18} \): Using the tangent addition formula again: \[ \tan \left( \tan^{-1} \frac{3}{11} + \tan^{-1} \frac{1}{18} \right) = \frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \cdot \frac{1}{18}} \] ### Step 7: Simplify this expression Calculate \( \frac{3}{11} + \frac{1}{18} \): \[ \frac{3 \cdot 18 + 1 \cdot 11}{11 \cdot 18} = \frac{54 + 11}{198} = \frac{65}{198} \] Calculate \( 1 - \frac{3}{11} \cdot \frac{1}{18} \): \[ 1 - \frac{3}{198} = \frac{198 - 3}{198} = \frac{195}{198} \] ### Step 8: Final substitution Now substituting back: \[ \tan \left( \tan^{-1} \frac{3}{11} + \tan^{-1} \frac{1}{18} \right) = \frac{\frac{65}{198}}{\frac{195}{198}} = \frac{65}{195} = \frac{13}{39} = \frac{1}{3} \] ### Final Result Thus, we have: \[ \tan \left( \tan^{-1} \frac{1}{7} + \cot^{-1} 8 + \cot^{-1} 18 \right) = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

tan(cot^(-1)x) is equal to

tan(cot^(-1)x) is equal to

Solve tan^(-1) x gt cot^(-1) x

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Draw the graph of y=tan (tan^(-1)x) or y = cot (cot^(-1) x)

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

If tan^(-1) x + tan^(-1) y = (4pi)/(5) , then cot^(-1) x + cot^(-1) y equal to

Evaluate : tan[2tan^(-1)(1/2)-cot^(-1)3]

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)