Home
Class 12
MATHS
If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) ...

If `(sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)`

A

` - pi^(2)`

B

`- pi^(2)/2`

C

0

D

` pi^(2)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the equation: \[ (\sin^{-1} a)^2 + (\cos^{-1} b)^2 + (\sec^{-1} c)^2 + (\csc^{-1} d)^2 = \frac{5\pi^2}{2} \] We want to find the value of: \[ (\sin^{-1} a)^2 - (\cos^{-1} b)^2 + (\sec^{-1} c)^2 - (\csc^{-1} d)^2 \] ### Step 1: Identify the maximum values of the inverse trigonometric functions - The maximum value of \(\sin^{-1} a\) is \(\frac{\pi}{2}\). - The maximum value of \(\cos^{-1} b\) is \(\pi\). - The maximum value of \(\sec^{-1} c\) is \(\pi\). - The maximum value of \(\csc^{-1} d\) is \(\frac{\pi}{2}\). ### Step 2: Substitute maximum values into the equation Substituting the maximum values into the equation: \[ \left(\frac{\pi}{2}\right)^2 + \pi^2 + \pi^2 + \left(\frac{\pi}{2}\right)^2 = \frac{5\pi^2}{2} \] Calculating each term: - \(\left(\frac{\pi}{2}\right)^2 = \frac{\pi^2}{4}\) - \(\pi^2\) (for both \(\cos^{-1} b\) and \(\sec^{-1} c\)) So we have: \[ \frac{\pi^2}{4} + \pi^2 + \pi^2 + \frac{\pi^2}{4} = \frac{\pi^2}{4} + \frac{4\pi^2}{4} + \frac{\pi^2}{4} = \frac{6\pi^2}{4} = \frac{3\pi^2}{2} \] This does not equal \(\frac{5\pi^2}{2}\), so we need to adjust our values. ### Step 3: Set values based on the equation From the equation, we can set: Let: - \(\sin^{-1} a = \frac{\pi}{2}\) - \(\cos^{-1} b = \pi\) - \(\sec^{-1} c = \pi\) - \(\csc^{-1} d = \frac{\pi}{2}\) This gives us: \[ \left(\frac{\pi}{2}\right)^2 + \pi^2 + \pi^2 + \left(\frac{\pi}{2}\right)^2 = \frac{5\pi^2}{2} \] ### Step 4: Calculate the desired expression Now we substitute these values into the expression we want to evaluate: \[ (\sin^{-1} a)^2 - (\cos^{-1} b)^2 + (\sec^{-1} c)^2 - (\csc^{-1} d)^2 \] Substituting the values: \[ \left(\frac{\pi}{2}\right)^2 - \pi^2 + \pi^2 - \left(\frac{\pi}{2}\right)^2 \] Calculating this gives: \[ \frac{\pi^2}{4} - \pi^2 + \pi^2 - \frac{\pi^2}{4} \] The \(-\pi^2\) and \(+\pi^2\) cancel out: \[ \frac{\pi^2}{4} - \frac{\pi^2}{4} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

Find the value of 2\ sec^(-1)2+sin^(-1)(1/2) .

The value of 2sec^(-1) 2 + 2 sin^(-1)(1/2) is

Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

Find the value of (1-cos^(2)A)*"cosec"^(2)A .

If A = 5^(@) then the value of expression (( secA)/((1 - 4sin^(2)A)) + (cosec A)/((4 cos^(2)A -1)))^(2) is :

sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)