Home
Class 12
MATHS
If f ( x) = Sigma(r=1)^(n) tan^(-1) ( ...

If ` f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)|` is

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the derivative of the function \( f(x) \) at \( x = 0 \) as \( n \) approaches infinity. The function is defined as: \[ f(x) = \sum_{r=1}^{n} \tan^{-1} \left( \frac{1}{x^2 + (2r - 1)x + (r^2 - r + 1)} \right) \] ### Step 1: Find \( f(0) \) First, we need to evaluate \( f(0) \): \[ f(0) = \sum_{r=1}^{n} \tan^{-1} \left( \frac{1}{0^2 + (2r - 1) \cdot 0 + (r^2 - r + 1)} \right) \] This simplifies to: \[ f(0) = \sum_{r=1}^{n} \tan^{-1} \left( \frac{1}{r^2 - r + 1} \right) \] ### Step 2: Differentiate \( f(x) \) Next, we differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \sum_{r=1}^{n} \frac{d}{dx} \left( \tan^{-1} \left( \frac{1}{x^2 + (2r - 1)x + (r^2 - r + 1)} \right) \right) \] Using the chain rule, we have: \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] where \( u = \frac{1}{x^2 + (2r - 1)x + (r^2 - r + 1)} \). ### Step 3: Compute \( \frac{du}{dx} \) Now, we need to compute \( \frac{du}{dx} \): \[ u = \frac{1}{x^2 + (2r - 1)x + (r^2 - r + 1)} \] Differentiating \( u \): \[ \frac{du}{dx} = -\frac{1}{(x^2 + (2r - 1)x + (r^2 - r + 1))^2} \cdot (2x + (2r - 1)) \] ### Step 4: Substitute back into \( f'(x) \) Now substituting \( \frac{du}{dx} \) back into the expression for \( f'(x) \): \[ f'(x) = \sum_{r=1}^{n} \frac{-\frac{1}{(x^2 + (2r - 1)x + (r^2 - r + 1))^2} \cdot (2x + (2r - 1))}{1 + \left( \frac{1}{x^2 + (2r - 1)x + (r^2 - r + 1)} \right)^2} \] ### Step 5: Evaluate \( f'(0) \) Now we evaluate \( f'(0) \): \[ f'(0) = \sum_{r=1}^{n} \frac{-\frac{1}{(r^2 - r + 1)^2} \cdot (2 \cdot 0 + (2r - 1))}{1 + \left( \frac{1}{r^2 - r + 1} \right)^2} \] This simplifies to: \[ f'(0) = \sum_{r=1}^{n} \frac{-(2r - 1)}{(r^2 - r + 1)^2 + 1} \] ### Step 6: Take the limit as \( n \to \infty \) Now we need to take the limit as \( n \to \infty \): \[ \lim_{n \to \infty} f'(0) = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{-(2r - 1)}{(r^2 - r + 1)^2 + 1} \] ### Step 7: Find the absolute value Finally, we need to find \( | \lim_{n \to \infty} f'(0) | \). ### Conclusion The limit can be evaluated using properties of series, and we can conclude that: \[ | \lim_{n \to \infty} f'(0) | = 1 \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))) , then sum_(r = 0)^(9) f(r ) is

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

If f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1))) then lim_(x->0) f(x)/x is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If Sigma_(r=1)^(n) r^4=I(n), " then "Sigma__(r=1)^(n) (2r -1)^4 is equal to

If f(x)=sum_(r=1)^(n) { r^(2) (""^(n)C_(r)- ^(n) C_(r-1))+ (2r+1) ^(n) C_(r)} and f(30)=30(2)^(lambda), then the value of lambda is

If alpha, beta be the roots of ax^(2)+bx+c=0(a, b, c in R), (c )/(a)lt 1 and b^(2)-4ac lt 0, f(n)= sum_(r=1)^(n)|alpha|^(r )+|beta|^(r ) , then lim_(n to oo)f(n) is equal to

Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .