Home
Class 12
MATHS
Let f(x) = sin (sin^-1 2x) + cosec (cose...

Let `f(x) = sin (sin^-1 2x) + cosec (cosec^-1 2x) + tan(tan^-1 2x)`, then which one of the following statements is/are incorrect ?

A

f(x) is odd function

B

f(x) is injective

C

Range of f (x) contains only two integers.

D

The value of `f' (1/2) ` is equal to 6.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin(\sin^{-1}(2x)) + \csc(\csc^{-1}(2x)) + \tan(\tan^{-1}(2x)) \) and determine which statements about it are incorrect. ### Step 1: Determine the domain of \( f(x) \) 1. **For \( \sin^{-1}(2x) \)**: The argument \( 2x \) must lie in the interval \([-1, 1]\). Therefore, we have: \[ -1 \leq 2x \leq 1 \implies -\frac{1}{2} \leq x \leq \frac{1}{2} \] 2. **For \( \csc^{-1}(2x) \)**: The argument \( 2x \) must be either \( \geq 1 \) or \( \leq -1 \). Thus: \[ 2x \geq 1 \quad \text{or} \quad 2x \leq -1 \implies x \geq \frac{1}{2} \quad \text{or} \quad x \leq -\frac{1}{2} \] 3. **For \( \tan^{-1}(2x) \)**: There are no restrictions on \( 2x \) since the domain of \( \tan^{-1} \) is all real numbers. ### Conclusion on Domain The overall domain of \( f(x) \) is the intersection of the domains from the three parts: \[ x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \cap \left( (-\infty, -\frac{1}{2}] \cup [\frac{1}{2}, \infty) \right) = \left\{-\frac{1}{2}, \frac{1}{2}\right\} \] Thus, the domain of \( f(x) \) is \( x = -\frac{1}{2} \) and \( x = \frac{1}{2} \). ### Step 2: Evaluate \( f(x) \) at the endpoints 1. **Evaluate \( f\left(-\frac{1}{2}\right) \)**: \[ f\left(-\frac{1}{2}\right) = \sin(\sin^{-1}(-1)) + \csc(\csc^{-1}(-1)) + \tan(\tan^{-1}(-1)) \] \[ = -1 - 1 - 1 = -3 \] 2. **Evaluate \( f\left(\frac{1}{2}\right) \)**: \[ f\left(\frac{1}{2}\right) = \sin(\sin^{-1}(1)) + \csc(\csc^{-1}(1)) + \tan(\tan^{-1}(1)) \] \[ = 1 + 1 + 1 = 3 \] ### Step 3: Check if \( f(x) \) is an odd function A function \( f(x) \) is odd if \( f(-x) = -f(x) \). We check: \[ f\left(-\frac{1}{2}\right) = -3 \quad \text{and} \quad f\left(\frac{1}{2}\right) = 3 \] Thus, \( f(-x) = -f(x) \) holds true, so \( f(x) \) is an odd function. ### Step 4: Check if \( f(x) \) is injective A function is injective if it gives different outputs for different inputs. Since \( f(-\frac{1}{2}) = -3 \) and \( f(\frac{1}{2}) = 3 \) are distinct, and there are no other values in the domain, \( f(x) \) is injective. ### Step 5: Determine the range of \( f(x) \) The outputs we found are \( -3 \) and \( 3 \). Therefore, the range of \( f(x) \) contains only these two values, which are integers. ### Step 6: Calculate the derivative at \( x = \frac{1}{2} \) Since \( f(x) \) is linear in this case, we can differentiate: \[ f'(x) = 6 \quad \text{(as derived from the function)} \] Thus, \( f'(\frac{1}{2}) = 6 \). ### Conclusion on Statements - **Statement A**: \( f(x) \) is an odd function. (Correct) - **Statement B**: \( f(x) \) is injective. (Correct) - **Statement C**: The range of \( f(x) \) contains only two integers. (Incorrect, it only contains -3 and 3) - **Statement D**: \( f'(\frac{1}{2}) = 6 \). (Correct) ### Final Answer The incorrect statement is **C**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

sin (tan ^(-1)2x)

Let f : I - {-1,0,1} to [-pi, pi] be defined as f(x) = 2 tan^(-1) x - tan^(-1)((2x)/(1 -x^(2))) , then which of the following statements (s) is (are) correct ?

Let f(x)=cos^(-1)((1-tan^(2)(x)/(2))/(1+tan^(2)(x)/(2))) . Then which of the following statement is/are true ?

If f(x) = sin^(-1) x. cos^(-1) x. tan^(-1) x . cot^(-1) x. sec^(-1) x. cosec^(-1) x , then which of the following statement (s) hold(s) good?

Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)) then which of the following is correct :

Let f(x)=tan^(-1)((sqrt(1+x^(2))-1)/(x)) then which of the following is correct :

Let f (x) =cos ^(-1) ((1-tan ^(2)(x//2))/(1+ tan ^(2) (x//2))) Which of the following statement (s) is/are correct about f (x) ?

Let f(x)={((x-1)^2 sin(1/(x-1))-|x|,; x != 1), (-1,; x=1):} then which one of the following is true?

Let f(x)=(sin^(-1)x)/(cos^(-1)x)+(cos^(-1)x)/(tan^(-1)x)+(tan^(-1)x)/(sec^(-1)x)+(sec^(-1)x)/(cosec^(-1)x)+(cosec^(-1)x)/(cot^(-1)x)+(cot^(-1)x)/(sin^(-1)x) . Then which of the following statements holds good?

cosec^(-1)((1+tan ^2x)/(2tanx))