Home
Class 12
MATHS
If f ( x) = cos^(-1) ( cos ( x + 1) ) "...

If ` f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2))`, then

A

`f(1) + g (1) = ( pi -1)`

B

`f (1) gt g(1)`

C

` f(2) gt g (2) `

D

`f(2) lt g (2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the functions \( f(x) \) and \( g(x) \) at specific points and analyze the results. ### Step 1: Evaluate \( f(1) \) Given: \[ f(x) = \cos^{-1}(\cos(x + 1)) \] We need to find \( f(1) \): \[ f(1) = \cos^{-1}(\cos(1 + 1)) = \cos^{-1}(\cos(2)) \] Since \( 2 \) is in the range of \( \cos^{-1} \) (which is \( [0, \pi] \)), we have: \[ f(1) = 2 \] ### Step 2: Evaluate \( f(2) \) Now, we find \( f(2) \): \[ f(2) = \cos^{-1}(\cos(2 + 1)) = \cos^{-1}(\cos(3)) \] Again, since \( 3 \) is in the range of \( \cos^{-1} \), we have: \[ f(2) = 3 \] ### Step 3: Evaluate \( g(1) \) Next, we evaluate \( g(1) \): \[ g(x) = \sin^{-1}(\sin(x + 2)) \] Thus, \[ g(1) = \sin^{-1}(\sin(1 + 2)) = \sin^{-1}(\sin(3)) \] Since \( 3 \) is greater than \( \frac{\pi}{2} \) but less than \( \pi \), we have: \[ g(1) = \pi - 3 \] ### Step 4: Evaluate \( g(2) \) Now, we find \( g(2) \): \[ g(2) = \sin^{-1}(\sin(2 + 2)) = \sin^{-1}(\sin(4)) \] Since \( 4 \) is greater than \( \pi \), we can write: \[ g(2) = \pi - 4 \] ### Step 5: Compare values Now we can compare the values we have calculated: - \( f(1) = 2 \) - \( g(1) = \pi - 3 \) - \( f(2) = 3 \) - \( g(2) = \pi - 4 \) ### Step 6: Analyze the options 1. **Option A**: \( f(1) + g(1) = 2 + (\pi - 3) = \pi - 1 \) (Correct) 2. **Option B**: \( f(1) > g(1) \) means \( 2 > \pi - 3 \). Since \( \pi \approx 3.14 \), \( 2 > -0.14 \) (Correct) 3. **Option C**: \( f(2) > g(2) \) means \( 3 > \pi - 4 \). Since \( 3 > -0.14 \) (Correct) 4. **Option D**: \( f(2) < g(2) \) means \( 3 < \pi - 4 \). Since \( 3 < -0.14 \) is incorrect (Incorrect) ### Conclusion The correct options are A, B, and C. Option D is incorrect.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x gt sin^(-1) x , then

If cos^(-1)x >sin^(-1)x , then

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(1-lamda) sin x-x, where lamda in R and x in [0, pi//2). The values of 'lamda' such that g '(x) ge 0 for any x in [0, pi//2):

The function f(x) = sin ^(-1)(cos x) is

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

tan^(-1) ((1-cos x)/(sin x))

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

'solve tan ( sin − 1 ( cos ( sin − 1 x ) ) ) tan ( cos − 1 ( sin ( cos − 1 x ) ) ) '

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]