Home
Class 12
MATHS
Let x(1) " and " x(2) ( x(1) gt x(2)) be...

Let `x_(1) " and " x_(2) ( x_(1) gt x_(2))` be roots of the equation `sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 `, then

A

` sin ^(-1). 1/x^(1) + cos ^(-1). 1/x_(2) = pi`

B

`sin^(-1) ( 1/x_(1)) + cos ^(-1) ( 1/x_(2)) = 0 `

C

` sin ^(-1) . 1/x_(1) + sin ^(-1) ( 1/x_(2)) = 0 `

D

` cos^(-1) ( 1/x_(1)) + cos^(-1) ( 1/x_(2)) = pi `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} \left( \cos \left( \tan^{-1} \left( \csc \left( \cot^{-1} x \right) \right) \right) \right) = \frac{\pi}{6} \), we will follow these steps: ### Step 1: Substitute \( A = \cot^{-1} x \) Let \( A = \cot^{-1} x \). Then, we have: \[ \cot A = x \] This means we can construct a right triangle where the adjacent side is 1 and the opposite side is \( x \). By the Pythagorean theorem, the hypotenuse will be: \[ \text{Hypotenuse} = \sqrt{x^2 + 1} \] ### Step 2: Find \( \csc A \) From the triangle, we can find \( \csc A \): \[ \csc A = \frac{\text{Hypotenuse}}{\text{Opposite}} = \frac{\sqrt{x^2 + 1}}{1} = \sqrt{x^2 + 1} \] ### Step 3: Substitute \( \csc A \) into the equation Now, we substitute \( \csc A \) into the original equation: \[ \sin^{-1} \left( \cos \left( \tan^{-1} \left( \sqrt{x^2 + 1} \right) \right) \right) = \frac{\pi}{6} \] ### Step 4: Let \( V = \tan^{-1} \left( \sqrt{x^2 + 1} \right) \) Let \( V = \tan^{-1} \left( \sqrt{x^2 + 1} \right) \). Then: \[ \tan V = \sqrt{x^2 + 1} \] Constructing a right triangle for angle \( V \), we have: - Opposite = \( \sqrt{x^2 + 1} \) - Adjacent = 1 - Hypotenuse = \( \sqrt{(\sqrt{x^2 + 1})^2 + 1^2} = \sqrt{x^2 + 2} \) ### Step 5: Find \( \cos V \) From the triangle, we can find \( \cos V \): \[ \cos V = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{x^2 + 2}} \] ### Step 6: Substitute \( \cos V \) into the equation Now, we substitute \( \cos V \) back into the equation: \[ \sin^{-1} \left( \frac{1}{\sqrt{x^2 + 2}} \right) = \frac{\pi}{6} \] ### Step 7: Solve the equation Taking the sine of both sides: \[ \frac{1}{\sqrt{x^2 + 2}} = \sin \frac{\pi}{6} = \frac{1}{2} \] Cross-multiplying gives: \[ 2 = \sqrt{x^2 + 2} \] Squaring both sides: \[ 4 = x^2 + 2 \] Thus, we have: \[ x^2 = 2 \] Taking the square root: \[ x = \pm \sqrt{2} \] ### Step 8: Identify the roots Given \( x_1 > x_2 \), we have: \[ x_1 = \sqrt{2}, \quad x_2 = -\sqrt{2} \] ### Conclusion The roots of the equation are \( x_1 = \sqrt{2} \) and \( x_2 = -\sqrt{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

sin^-1(cos x)+tan ^-1(cot x)

If tan^(-1)x+2cot^(-1)x=(5pi)/6 , then find x.

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

solve the equation cot^-1 x + tan^-1 3 = pi/2

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is