Home
Class 12
MATHS
Suppose f, g and h be three real valued ...

Suppose f, g and h be three real valued function defined on R Let `f(x) =2x+|x|` `g(x) =1/3(2x-|x|)` `h(x) =f(g(x))` The range of the function `k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x)))` is equal to

A

`[1/4,7/4]`

B

`[5/4,11/4]`

C

`[1/4,5/4]`

D

`[7/4,11/4]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the functions \( f(x) \), \( g(x) \), and \( h(x) \) and then find the range of the function \( k(x) \). ### Step 1: Analyze the function \( f(x) \) The function \( f(x) \) is defined as: \[ f(x) = 2x + |x| \] We can break this down based on the value of \( x \): - If \( x \geq 0 \): \[ f(x) = 2x + x = 3x \] - If \( x < 0 \): \[ f(x) = 2x - x = x \] Thus, we can summarize: \[ f(x) = \begin{cases} 3x & \text{if } x \geq 0 \\ x & \text{if } x < 0 \end{cases} \] ### Step 2: Analyze the function \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = \frac{1}{3}(2x - |x|) \] Again, we can break this down based on the value of \( x \): - If \( x \geq 0 \): \[ g(x) = \frac{1}{3}(2x - x) = \frac{x}{3} \] - If \( x < 0 \): \[ g(x) = \frac{1}{3}(2x + x) = x \] Thus, we can summarize: \[ g(x) = \begin{cases} \frac{x}{3} & \text{if } x \geq 0 \\ x & \text{if } x < 0 \end{cases} \] ### Step 3: Analyze the function \( h(x) \) The function \( h(x) \) is defined as: \[ h(x) = f(g(x)) \] Now we will evaluate \( h(x) \) based on the cases for \( g(x) \): - If \( x \geq 0 \): \[ g(x) = \frac{x}{3} \quad \Rightarrow \quad h(x) = f\left(\frac{x}{3}\right) = 3\left(\frac{x}{3}\right) = x \] - If \( x < 0 \): \[ g(x) = x \quad \Rightarrow \quad h(x) = f(x) = x \] Thus, we can summarize: \[ h(x) = x \quad \text{for all } x \in \mathbb{R} \] ### Step 4: Analyze the function \( k(x) \) The function \( k(x) \) is defined as: \[ k(x) = 1 + \frac{1}{\pi} \left( \cos^{-1}(h(x)) + \cot^{-1}(h(x)) \right) \] Since \( h(x) = x \), we can rewrite \( k(x) \) as: \[ k(x) = 1 + \frac{1}{\pi} \left( \cos^{-1}(x) + \cot^{-1}(x) \right) \] ### Step 5: Determine the range of \( k(x) \) 1. **Domain of \( k(x) \)**: The functions \( \cos^{-1}(x) \) and \( \cot^{-1}(x) \) have specific domains: - \( \cos^{-1}(x) \) is defined for \( x \in [-1, 1] \). - \( \cot^{-1}(x) \) is defined for all real \( x \). 2. **Range of \( \cos^{-1}(x) \)**: The range is \( [0, \pi] \) for \( x \in [-1, 1] \). 3. **Range of \( \cot^{-1}(x) \)**: The range is \( (0, \pi) \). 4. **Combine the ranges**: - For \( x = -1 \): \[ k(-1) = 1 + \frac{1}{\pi}(\pi + \cot^{-1}(-1)) = 1 + 1 + \frac{1}{\pi}(\frac{\pi}{4}) = 2 + \frac{1}{4} \] - For \( x = 1 \): \[ k(1) = 1 + \frac{1}{\pi}(0 + \cot^{-1}(1)) = 1 + \frac{1}{\pi}(\frac{\pi}{4}) = 1 + \frac{1}{4} = 1.25 \] Thus, the range of \( k(x) \) is from \( 1 \) to \( 2 \). ### Final Answer The range of the function \( k(x) \) is: \[ \text{Range of } k(x) = \left[ 1, 2 \right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). h(x) = 4

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function h(x) is increasing, is

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is

Let f and g be two real values functions defined by f(x)= x + 1 and g(x) = 2x-3 . Find 1) f+g , 2) f-g , 3) f/g

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, Number of point (s) where the graphs of the two function, y=f(x) and y=g(x) intersects in [0,pi] , is

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

If h(a)=h(b), the value of the integral int_a^b [f(g(h(x))]^(-1)f'(g(h(x)))g'(h(x))h'(x)dx is equal to

If f,g,\ h are three functions defined from R\ to\ R as follows: the range of h(x)=x2+1