Home
Class 12
MATHS
Suppose f, g, and h be three real valued...

Suppose f, g, and h be three real valued function defined on R.
Let `f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|)` and `h(x) = f(g(x))`
The domain of definition of the function ` l (x) = sin^(-1) ( f(x) - g (x) )` is equal to

A

`(3/8, infty]`

B

`( - infty, 1]`

C

` [ -1, 1]`

D

`( - infty, 3/8]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( l(x) = \sin^{-1}(f(x) - g(x)) \), we first need to determine the expressions for \( f(x) \) and \( g(x) \) based on the definitions provided. ### Step 1: Define \( f(x) \) and \( g(x) \) 1. **For \( f(x) \)**: \[ f(x) = 2x + |x| \] - If \( x \geq 0 \), then \( |x| = x \) and: \[ f(x) = 2x + x = 3x \] - If \( x < 0 \), then \( |x| = -x \) and: \[ f(x) = 2x - x = x \] 2. **For \( g(x) \)**: \[ g(x) = \frac{1}{3}(2x - |x|) \] - If \( x \geq 0 \), then \( |x| = x \) and: \[ g(x) = \frac{1}{3}(2x - x) = \frac{1}{3}x \] - If \( x < 0 \), then \( |x| = -x \) and: \[ g(x) = \frac{1}{3}(2x + x) = x \] ### Step 2: Calculate \( f(x) - g(x) \) Now we will find \( f(x) - g(x) \) for both cases. - **Case 1: \( x \geq 0 \)** \[ f(x) - g(x) = 3x - \frac{1}{3}x = \frac{9x}{3} - \frac{1}{3}x = \frac{8x}{3} \] - **Case 2: \( x < 0 \)** \[ f(x) - g(x) = x - x = 0 \] ### Step 3: Define \( l(x) \) Now we can express \( l(x) \): \[ l(x) = \sin^{-1}(f(x) - g(x)) \] - For \( x \geq 0 \): \[ l(x) = \sin^{-1}\left(\frac{8x}{3}\right) \] - For \( x < 0 \): \[ l(x) = \sin^{-1}(0) = 0 \] ### Step 4: Determine the domain of \( l(x) \) The function \( \sin^{-1}(y) \) is defined for \( y \) in the range \([-1, 1]\). Therefore, we need to find when \( f(x) - g(x) \) lies within this interval. 1. **For \( x \geq 0 \)**: \[ \frac{8x}{3} \leq 1 \implies 8x \leq 3 \implies x \leq \frac{3}{8} \] Thus, for \( x \geq 0 \), the valid range is \( 0 \leq x \leq \frac{3}{8} \). 2. **For \( x < 0 \)**: \( l(x) = 0 \) is always valid since \( \sin^{-1}(0) \) is defined. ### Final Domain Combining both cases, the domain of \( l(x) \) is: \[ (-\infty, 0) \cup \left[0, \frac{3}{8}\right] \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Suppose f, g and h be three real valued function defined on R Let f(x) =2x+|x| g(x) =1/3(2x-|x|) h(x) =f(g(x)) The range of the function k(x) = 1 + 1/pi(cos^(-1)h(x) + cot^(-1)(h(x))) is equal to

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). h(x) = 4

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function h(x) is increasing, is

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, The length of a longest interval in which the function g=h(x) is increasing, is

Let f (x), g(x) be two real valued functions then the function h(x) =2 max {f(x)-g(x), 0} is equal to :

Consider f, g and h be three real valued function defined on R. Let f(x)=sin3x+cosx,g(x)=cos3x+sinx and h(x)=f^(2)(x)+g^(2)(x). Then, Number of point (s) where the graphs of the two function, y=f(x) and y=g(x) intersects in [0,pi] , is

Let f and g be two real values functions defined by f(x)= x + 1 and g(x) = 2x-3 . Find 1) f+g , 2) f-g , 3) f/g

For which Domain, the functions f(x) = 2x^2-1 and g(x)=1-3x are equal to

Let f and g be two real values functions defined by f ( x ) = x + 1 and g ( x ) = 2 x − 3 . Find 1) f + g , 2) f − g , 3) f / g

The domain for which the functions defined by f(x)=6x^(2)+1 and g(x)=11-7x are equal is