Home
Class 12
MATHS
In Delta ABC, if angle B = sec^(-1)((5)/...

In `Delta ABC`, if `angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5)`,
`angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13))` and c = 3
`tan A , tan B, tan C ` are in

A

AP

B

GP

C

HP

D

neither AP, GP nor HP

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of angles B and C in triangle ABC using the given inverse trigonometric functions, and then determine the relationship between tan A, tan B, and tan C. ### Step 1: Calculate angle B Given: \[ \angle B = \sec^{-1}\left(\frac{5}{4}\right) + \csc^{-1}(\sqrt{5}) \] Let: - \( \sec A = \frac{5}{4} \) - \( \csc B = \sqrt{5} \) From \( \sec A = \frac{5}{4} \), we can form a right triangle: - Hypotenuse = 5 - Base = 4 - Using Pythagorean theorem, the height (perpendicular) = \( \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = 3 \) Thus, \[ \tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{3}{4} \] Now for \( \csc B = \sqrt{5} \): - Hypotenuse = \( \sqrt{5} \) - Using Pythagorean theorem, the base = 2 (since \( \sin B = \frac{1}{\sqrt{5}} \) gives us the opposite side as 1) - Therefore, \( \tan B = \frac{1}{2} \) Now, we can find \( \tan(\angle B) \) using the formula for the tangent of the sum of two angles: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Substituting the values: \[ \tan B = \tan\left(\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{2}\right)\right) = \frac{\frac{3}{4} + \frac{1}{2}}{1 - \frac{3}{4} \cdot \frac{1}{2}} = \frac{\frac{3}{4} + \frac{2}{4}}{1 - \frac{3}{8}} = \frac{\frac{5}{4}}{\frac{5}{8}} = 2 \] Thus, \[ \tan B = 2 \] ### Step 2: Calculate angle C Given: \[ \angle C = \csc^{-1}\left(\frac{25}{7}\right) + \cot^{-1}\left(\frac{9}{13}\right) \] Let: - \( \csc \alpha = \frac{25}{7} \) - \( \cot \beta = \frac{9}{13} \) From \( \csc \alpha = \frac{25}{7} \): - Hypotenuse = 25 - Opposite = 7 - Using Pythagorean theorem, the base = \( \sqrt{25^2 - 7^2} = \sqrt{625 - 49} = \sqrt{576} = 24 \) Thus, \[ \tan \alpha = \frac{7}{24} \] For \( \cot \beta = \frac{9}{13} \): - Therefore, \( \tan \beta = \frac{1}{\cot \beta} = \frac{13}{9} \) Now, we can find \( \tan(\angle C) \) using the formula for the tangent of the sum of two angles: \[ \tan C = \tan\left(\tan^{-1}\left(\frac{7}{24}\right) + \tan^{-1}\left(\frac{13}{9}\right)\right) = \frac{\frac{7}{24} + \frac{13}{9}}{1 - \frac{7}{24} \cdot \frac{13}{9}} \] Calculating this gives: \[ \tan C = \frac{\frac{63 + 104}{216}}{1 - \frac{91}{216}} = \frac{\frac{167}{216}}{\frac{125}{216}} = \frac{167}{125} \] ### Step 3: Calculate angle A Using the fact that the sum of angles in a triangle equals \( \pi \): \[ \angle A + \angle B + \angle C = \pi \] Substituting the known angles: \[ \angle A + \tan^{-1}(2) + \tan^{-1}(3) = \pi \] Using the tangent addition formula again: \[ \tan A = \tan\left(\pi - \left(\tan^{-1}(2) + \tan^{-1}(3)\right)\right) = -\tan\left(\tan^{-1}(2) + \tan^{-1}(3)\right) \] Calculating gives: \[ \tan A = -\frac{5}{-1} = -5 \] ### Step 4: Determine the relationship between \( \tan A, \tan B, \tan C \) Now we have: - \( \tan A = -5 \) - \( \tan B = 2 \) - \( \tan C = \frac{167}{125} \) To check if they are in AP, GP, or HP: - Check if \( 2 \) is the arithmetic mean of \( -5 \) and \( \frac{167}{125} \): \[ 2 = \frac{-5 + \frac{167}{125}}{2} \] This does not hold true. - Check for geometric mean: \[ 2^2 = -5 \cdot \frac{167}{125} \] This does not hold true. - Check for harmonic mean: \[ \frac{2}{\frac{1}{-5} + \frac{1}{2} + \frac{1}{\frac{167}{125}}} \] This does not hold true. Thus, \( \tan A, \tan B, \tan C \) are in **AP**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 The distance between orthocentre and centroid of triangle with sides a^(2) , b^(4/3) and c is equal to

Evaluate tan(cosec^(-1)(5/3)) .

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The value of cot(cosec^(-1)(5)/(3)+tan^(-1)""(2)/(3)) is

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

The vlaue of tan^(-1)sqrt(3)-sec^(-1)(-2)+cosec^(-1)(2)/sqrt(3) is

The value of tan^(2) (sec^(-1)2)+ cot^(2) ("cosec"^(-1)3) is

In Delta ABC , angle B = 90 ^(@) Evaluate : cosec A cos C - sin A sec C .

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is