Home
Class 12
MATHS
In Delta ABC, if angle B = sec^(-1)((5)/...

In `Delta ABC`, if `angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5)`,
`angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13))` and c = 3
The distance between orthocentre and centroid of triangle with sides ` a^(2) , b^(4/3)` and c is equal to

A

`5/2`

B

`5/3`

C

`10/3`

D

`7/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions provided in the video transcript and elaborate on each step. ### Step 1: Calculate Angle B Given: \[ \angle B = \sec^{-1}\left(\frac{5}{4}\right) + \csc^{-1}(\sqrt{5}) \] Let: \[ \sec^{-1}\left(\frac{5}{4}\right) = \alpha \quad \text{and} \quad \csc^{-1}(\sqrt{5}) = \beta \] From \(\sec \alpha = \frac{5}{4}\), we can create a right triangle: - Hypotenuse = 5 - Base = 4 - Using Pythagorean theorem, the height (perpendicular) is: \[ \sqrt{5^2 - 4^2} = \sqrt{25 - 16} = \sqrt{9} = 3 \] Thus, \(\tan \alpha = \frac{3}{4}\). For \(\csc \beta = \sqrt{5}\): - Hypotenuse = \(\sqrt{5}\) - Let the base = 2 (since \(\sqrt{5}^2 - 2^2 = 1\)) - Using Pythagorean theorem, the height (perpendicular) is: \[ \sqrt{(\sqrt{5})^2 - 2^2} = \sqrt{5 - 4} = 1 \] Thus, \(\tan \beta = \frac{1}{2}\). Now, we can find \(\tan(\angle B)\): \[ \tan(\angle B) = \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{3}{4} + \frac{1}{2}}{1 - \frac{3}{4} \cdot \frac{1}{2}} = \frac{\frac{3}{4} + \frac{2}{4}}{1 - \frac{3}{8}} = \frac{\frac{5}{4}}{\frac{5}{8}} = 2 \] Thus, \(\angle B = \tan^{-1}(2)\). ### Step 2: Calculate Angle C Given: \[ \angle C = \csc^{-1}\left(\frac{25}{7}\right) + \cot^{-1}\left(\frac{9}{13}\right) \] Let: \[ \csc \gamma = \frac{25}{7} \quad \text{and} \quad \cot \delta = \frac{9}{13} \] From \(\csc \gamma = \frac{25}{7}\): - Hypotenuse = 25 - Base = 24 (since \(\sqrt{25^2 - 24^2} = 7\)) - Thus, \(\tan \gamma = \frac{7}{24}\). For \(\cot \delta = \frac{9}{13}\): - Thus, \(\tan \delta = \frac{13}{9}\). Now, we can find \(\tan(\angle C)\): \[ \tan(\angle C) = \tan(\gamma + \delta) = \frac{\tan \gamma + \tan \delta}{1 - \tan \gamma \tan \delta} = \frac{\frac{7}{24} + \frac{13}{9}}{1 - \frac{7}{24} \cdot \frac{13}{9}} = \frac{\frac{63 + 104}{216}}{1 - \frac{91}{216}} = \frac{\frac{167}{216}}{\frac{125}{216}} = \frac{167}{125} \] Thus, \(\angle C = \tan^{-1}\left(\frac{167}{125}\right)\). ### Step 3: Use the Sine Rule to Find Sides Using the sine rule: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Given \(c = 3\) and we need to find \(a\) and \(b\). First, we find \(\sin B\) and \(\sin C\): - \(\sin B = \frac{2}{\sqrt{5}}\) (from \(\tan B = 2\)) - \(\sin C = \frac{3}{\sqrt{10}}\) (from \(\tan C = 3\)) Now, substituting: \[ \frac{3}{\sin C} = \frac{a}{\sin A} \quad \text{and} \quad \frac{3}{\sin C} = \frac{b}{\sin B} \] From this, we can find \(a\) and \(b\): \[ a = 3 \cdot \frac{\sin A}{\sin C} \quad \text{and} \quad b = 3 \cdot \frac{\sin B}{\sin C} \] ### Step 4: Calculate the Distance Between Orthocenter and Centroid The orthocenter \(H\) of the triangle is at the origin \((0, 0)\), and the centroid \(G\) can be calculated using the vertices of the triangle. The vertices can be taken as: - \(A(0, 0)\) - \(B(4, 0)\) - \(C(0, 3)\) The centroid \(G\) is given by: \[ G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) = \left(\frac{0 + 4 + 0}{3}, \frac{0 + 0 + 3}{3}\right) = \left(\frac{4}{3}, 1\right) \] Now, the distance \(D\) between the orthocenter and the centroid is: \[ D = \sqrt{\left(\frac{4}{3} - 0\right)^2 + (1 - 0)^2} = \sqrt{\left(\frac{4}{3}\right)^2 + 1^2} = \sqrt{\frac{16}{9} + 1} = \sqrt{\frac{16}{9} + \frac{9}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3} \] ### Final Answer The distance between the orthocenter and centroid of the triangle is: \[ \boxed{\frac{5}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , if angle B = sec^(-1)((5)/(4))+cosec^(-1) sqrt(5) , angle C = cosec^(-1)((25)/(7)) + cot^(-1)((9)/(13)) and c = 3 tan A , tan B, tan C are in

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

Find the orthocentre of the triangle ABC whose angular points are A(1,2),B(2,3) and C(4,3)

If (1, 1, 1) is the centroid of the triangle with vertices (2a, 3, 7), (-4, 3b, -8) and (8, 4, 6c), find a, b, c.

Find the co-ordinates of the centroid of a triangle ABC whose vertices are : A(-1, 3), B(1, -1) and C(5, 1)

sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

In Delta ABC , angle B = 90 ^(@) Evaluate : cosec A cos C - sin A sec C .

In Delta ABC, angle B = 90 ^(@) and sin A = (8)/(11) Show that : cot ^(2) A - cosec^(2) A + 1 =0

In a Delta ABC with vertices A(1,2), B(2,3) and C(3, 1) and angle A = angle B = cos^(-1)((1)/(sqrt(10))), angle C = cos^(-1)((4)/(5)) , then find the circumentre of Delta ABC .

Find the angles of a triangle whose vertices are A(0,-1,-2),B(3,1,4) and C (5,7,1).