Home
Class 12
MATHS
Let x(1) , x(2) , x(3) be the solution o...

Let `x_(1) , x_(2) , x_(3)` be the solution of `tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where " x_(1) lt x_(2) lt x_(3) " , then " 2x_(1) + x_(2) + x_(3)^(2) ` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{2x + 1}{x + 1}\right) + \tan^{-1}\left(\frac{2x - 1}{x - 1}\right) = 2\tan^{-1}(x + 1), \] we will use the properties of inverse tangent functions. ### Step 1: Use the formula for the sum of arctangents We know that \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right), \] provided \( ab < 1 \). Let \( a = \frac{2x + 1}{x + 1} \) and \( b = \frac{2x - 1}{x - 1} \). ### Step 2: Calculate \( a + b \) \[ a + b = \frac{2x + 1}{x + 1} + \frac{2x - 1}{x - 1} = \frac{(2x + 1)(x - 1) + (2x - 1)(x + 1)}{(x + 1)(x - 1)}. \] Calculating the numerator: \[ (2x + 1)(x - 1) + (2x - 1)(x + 1) = (2x^2 - 2x + x - 1) + (2x^2 + 2x - x - 1) = 4x^2 - 2. \] So, \[ a + b = \frac{4x^2 - 2}{(x + 1)(x - 1)}. \] ### Step 3: Calculate \( ab \) \[ ab = \left(\frac{2x + 1}{x + 1}\right)\left(\frac{2x - 1}{x - 1}\right) = \frac{(2x + 1)(2x - 1)}{(x + 1)(x - 1)} = \frac{4x^2 - 1}{x^2 - 1}. \] ### Step 4: Substitute into the equation Now substituting into the left-hand side: \[ \tan^{-1}\left(\frac{4x^2 - 2}{(x + 1)(x - 1) - (4x^2 - 1)}\right) = 2\tan^{-1}(x + 1). \] Using the double angle formula for tangent: \[ 2\tan^{-1}(x + 1) = \tan^{-1}\left(\frac{2(x + 1)}{1 - (x + 1)^2}\right). \] ### Step 5: Set the two expressions equal Equating the two expressions gives: \[ \frac{4x^2 - 2}{(x + 1)(x - 1) - (4x^2 - 1)} = \frac{2(x + 1)}{1 - (x + 1)^2}. \] ### Step 6: Simplify and solve for \( x \) Cross-multiplying and simplifying leads to a polynomial equation in \( x \): \[ 2x^3 - 4x^2 - x - 2 = 0. \] ### Step 7: Factor the polynomial Factoring gives: \[ (x^2 - 2)(2x + 1) = 0. \] ### Step 8: Find the roots The roots are: 1. \( x^2 - 2 = 0 \) gives \( x = \sqrt{2}, -\sqrt{2} \). 2. \( 2x + 1 = 0 \) gives \( x = -\frac{1}{2} \). Thus, the solutions are \( x_1 = -\sqrt{2}, x_2 = -\frac{1}{2}, x_3 = \sqrt{2} \). ### Step 9: Calculate \( 2x_1 + x_2 + x_3^2 \) Now we compute: \[ 2x_1 + x_2 + x_3^2 = 2(-\sqrt{2}) + \left(-\frac{1}{2}\right) + (\sqrt{2})^2. \] Calculating this gives: \[ = -2\sqrt{2} - \frac{1}{2} + 2 = -2\sqrt{2} + \frac{3}{2}. \] ### Final Answer Thus, the final expression is: \[ 2x_1 + x_2 + x_3^2 = -2\sqrt{2} + \frac{3}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

If tan ^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x, x gt 0 , then x = ?

If x_(1) = 2 tan^(-1) ((1 + x)/(1 -x)), x_(2) = sin^(-1) ((1 - x^(2))/(1 + x^(2))), " where " x in (0, 1) , then 2( x_(1) + x_(2) ) is equal to

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

Solve for x: tan^-1((1-x)/(1+x))=1/2 tan^-1 x, x > 0

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))