Home
Class 12
MATHS
Consider f(x) = sin^(-1) [2x] + cos^(-1...

Consider ` f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1)` ( where `[.]` denotes greatest integer function .) If domain of `f(x) " is " [a,b) ` and the range of ` f(x) ` is `{c,d}" then " a + b + (2d)/c ` is equal to ( where ` c lt d`)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sin^{-1}(2x) + \cos^{-1}(x - 1) \) where the greatest integer function is applied. We will find the domain and range of this function step by step. ### Step 1: Determine the domain of \( f(x) \) 1. **Analyze \( \sin^{-1}(2x) \)**: - The function \( \sin^{-1}(y) \) is defined for \( -1 \leq y \leq 1 \). - Therefore, for \( \sin^{-1}(2x) \), we have: \[ -1 \leq 2x \leq 1 \implies -\frac{1}{2} \leq x \leq \frac{1}{2} \] 2. **Analyze \( \cos^{-1}(x - 1) \)**: - The function \( \cos^{-1}(y) \) is defined for \( -1 \leq y \leq 1 \). - Therefore, for \( \cos^{-1}(x - 1) \), we have: \[ -1 \leq x - 1 \leq 1 \implies 0 \leq x \leq 2 \] 3. **Combine the domains**: - The domain of \( f(x) \) is the intersection of the two intervals: \[ -\frac{1}{2} \leq x \leq \frac{1}{2} \quad \text{and} \quad 0 \leq x \leq 2 \] - Thus, the domain is: \[ [0, \frac{1}{2}] \] ### Step 2: Determine the range of \( f(x) \) 1. **Evaluate \( f(x) \) at the endpoints of the domain**: - At \( x = 0 \): \[ f(0) = \sin^{-1}(0) + \cos^{-1}(-1) = 0 + \pi = \pi \] - At \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \sin^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{2} + \frac{2\pi}{3} = \frac{3\pi}{6} + \frac{4\pi}{6} = \frac{7\pi}{6} \] 2. **Analyze the behavior of \( f(x) \) in the interval**: - The function is continuous and increases from \( \pi \) to \( \frac{7\pi}{6} \) as \( x \) moves from \( 0 \) to \( \frac{1}{2} \). 3. **Determine the range**: - Thus, the range of \( f(x) \) is: \[ [\pi, \frac{7\pi}{6}] \] ### Step 3: Identify \( a, b, c, d \) From the domain and range: - \( a = 0 \) - \( b = \frac{1}{2} \) - \( c = \pi \) - \( d = \frac{7\pi}{6} \) ### Step 4: Calculate \( a + b + \frac{2d}{c} \) 1. **Calculate \( \frac{2d}{c} \)**: \[ \frac{2d}{c} = \frac{2 \cdot \frac{7\pi}{6}}{\pi} = \frac{14\pi/6}{\pi} = \frac{14}{6} = \frac{7}{3} \] 2. **Calculate \( a + b + \frac{2d}{c} \)**: \[ a + b + \frac{2d}{c} = 0 + \frac{1}{2} + \frac{7}{3} \] - Convert \( \frac{1}{2} \) to a common denominator of 6: \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{7}{3} = \frac{14}{6} \] - Therefore: \[ a + b + \frac{2d}{c} = \frac{3}{6} + \frac{14}{6} = \frac{17}{6} \] ### Final Result Thus, the final answer is: \[ \frac{17}{6} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function: