Home
Class 12
MATHS
Let f(x) = min ( tan^(-1) x, cot^(-1)x) ...

Let `f(x) = min ( tan^(-1) x, cot^(-1)x) " and " h ( x) = f ( x + 2) - pi //3 ". Let " x_(1), x_(2) ( "where " x_(1) lt x_(2))` be the integers in the range of h (x) , then the value of ` ( cos^(-1) ( cos x_(1)) + sin ^(-1) ( sin x_2)) ` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow these instructions: ### Step 1: Define the functions We have: - \( f(x) = \min(\tan^{-1} x, \cot^{-1} x) \) - \( h(x) = f(x + 2) - \frac{\pi}{3} \) ### Step 2: Analyze the function \( f(x) \) To find \( f(x) \), we need to determine where \( \tan^{-1} x \) and \( \cot^{-1} x \) intersect. 1. **Finding the intersection**: Set \( \tan^{-1} x = \cot^{-1} x \). Recall that \( \cot^{-1} x = \tan^{-1} \left(\frac{1}{x}\right) \). Therefore, we have: \[ \tan^{-1} x = \tan^{-1} \left(\frac{1}{x}\right) \] This implies: \[ x = \frac{1}{x} \Rightarrow x^2 = 1 \Rightarrow x = \pm 1 \] 2. **Determine the behavior of \( f(x) \)**: - For \( x < -1 \): \( f(x) = \cot^{-1} x \) - For \( -1 < x < 1 \): \( f(x) = \tan^{-1} x \) - For \( x > 1 \): \( f(x) = \cot^{-1} x \) ### Step 3: Analyze the function \( h(x) \) Now we need to evaluate \( h(x) \): \[ h(x) = f(x + 2) - \frac{\pi}{3} \] 1. **Determine the intervals for \( x + 2 \)**: - For \( x + 2 < -1 \) (i.e., \( x < -3 \)): \( f(x + 2) = \cot^{-1}(x + 2) \) - For \( -1 < x + 2 < 1 \) (i.e., \( -3 < x < -1 \)): \( f(x + 2) = \tan^{-1}(x + 2) \) - For \( x + 2 > 1 \) (i.e., \( x > -1 \)): \( f(x + 2) = \cot^{-1}(x + 2) \) ### Step 4: Find the range of \( h(x) \) 1. **Evaluate \( h(x) \) for different intervals**: - **For \( x < -3 \)**: \[ h(x) = \cot^{-1}(x + 2) - \frac{\pi}{3} \] - **For \( -3 < x < -1 \)**: \[ h(x) = \tan^{-1}(x + 2) - \frac{\pi}{3} \] - **For \( x > -1 \)**: \[ h(x) = \cot^{-1}(x + 2) - \frac{\pi}{3} \] 2. **Find the minimum and maximum values**: - As \( x \to -3 \), \( h(-3) = \cot^{-1}(-1) - \frac{\pi}{3} = \frac{3\pi}{4} - \frac{\pi}{3} = \frac{5\pi}{12} \). - As \( x \to -1 \), \( h(-1) = \tan^{-1}(1) - \frac{\pi}{3} = \frac{\pi}{4} - \frac{\pi}{3} = -\frac{\pi}{12} \). Thus, the range of \( h(x) \) is from \( -\frac{\pi}{12} \) to \( \frac{5\pi}{12} \). ### Step 5: Identify integers in the range The integers \( x_1 \) and \( x_2 \) in the range of \( h(x) \) are: - \( x_1 = -2 \) - \( x_2 = -1 \) ### Step 6: Calculate the final expression We need to evaluate: \[ \cos^{-1}(\cos x_1) + \sin^{-1}(\sin x_2 \] Substituting \( x_1 = -2 \) and \( x_2 = -1 \): \[ \cos^{-1}(\cos(-2)) + \sin^{-1}(\sin(-1)) \] 1. **Evaluate \( \cos^{-1}(\cos(-2)) \)**: Since \( -2 \) is in the range of \( [0, \pi] \): \[ \cos^{-1}(\cos(-2)) = 2 \] 2. **Evaluate \( \sin^{-1}(\sin(-1)) \)**: Since \( -1 \) is in the range of \( [-\frac{\pi}{2}, \frac{\pi}{2}] \): \[ \sin^{-1}(\sin(-1)) = -1 \] ### Final Calculation: \[ \cos^{-1}(\cos(-2)) + \sin^{-1}(\sin(-1)) = 2 - 1 = 1 \] ### Final Answer: The value is \( \boxed{1} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 is equal to

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Let cos(2 tan^(-1) x)=1/2 then the value of x is

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Let x_(1) " and " x_(2) ( x_(1) gt x_(2)) be roots of the equation sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 , then

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

Let f(x) = {(sin (tan^(-1) x) + sin (cot^(-1) x)}^2 - 1 , where |x| gt 1 and dy/dx = 1/2 d/dx (sin^(-1) f(x)) . If y(sqrt3) = pi/6 then y( -sqrt3)